Characterization of Practical Numbers
As Stewart (1954) and Sierpiński (1955) showed, it is straightforward to determine whether a number is practical from its prime factorization. A positive integer with and primes is practical if and only if and, for every i from 2 to k,
where denotes the sum of the divisors of x. For example, 3 ≤ σ(2)+1 = 4, 29 ≤ σ(2 × 32)+1 = 40, and 823 ≤ σ(2 × 32 × 29)+1=1171, so 2 × 32 × 29 × 823 = 429606 is practical. This characterization extends a partial classification of the practical numbers given by Srinivasan (1948).
It is not difficult to prove that this condition is necessary and sufficient for a number to be practical. In one direction, this condition is clearly necessary in order to be able to represent as a sum of divisors of n. In the other direction, the condition is sufficient, as can be shown by induction. More strongly, one can show that, if the factorization of n satisfies the condition above, then any can be represented as a sum of divisors of n, by the following sequence of steps:
- Let, and let .
- Since and can be shown by induction to be practical, we can find a representation of q as a sum of divisors of .
- Since, and since can be shown by induction to be practical, we can find a representation of r as a sum of divisors of .
- The divisors representing r, together with times each of the divisors representing q, together form a representation of m as a sum of divisors of n.
Read more about this topic: Practical Number
Famous quotes containing the words practical and/or numbers:
“After all, the practical reason why, when the power is once in the hands of the people, a majority are permitted, and for a long period continue, to rule is not because they are most likely to be in the right, nor because this seems fairest to the minority, but because they are physically the strongest. But a government in which the majority rule in all cases cannot be based on justice, even as far as men understand it.”
—Henry David Thoreau (18171862)
“Think of the earth as a living organism that is being attacked by billions of bacteria whose numbers double every forty years. Either the host dies, or the virus dies, or both die.”
—Gore Vidal (b. 1925)