Photometric Versus Radiometric Quantities
There are two parallel systems of quantities known as photometric and radiometric quantities. Every quantity in one system has an analogous quantity in the other system. Some examples of parallel quantities include:
- Luminance (photometric) and radiance (radiometric)
- Luminous flux (photometric) and radiant flux (radiometric)
- Luminous intensity (photometric) and radiant intensity (radiometric)
In photometric quantities every wavelength is weighted according to how sensitive the human eye is to it, while radiometric quantities use unweighted absolute power. For example, the eye responds much more strongly to green light than to red, so a green source will have greater luminous flux than a red source with the same radiant flux would. Radiant energy outside the visible spectrum does not contribute to photometric quantities at all, so for example a 1000 watt space heater may put out a great deal of radiant flux (1000 watts, in fact), but as a light source it puts out very few lumens (because most of the energy is in the infrared, leaving only a dim red glow in the visible).
Table 2. SI radiometry units- v
- t
- e
Quantity | Symbol | SI unit | Symbol | Dimension | Notes | |||
---|---|---|---|---|---|---|---|---|
Radiant energy | Qe | joule | J | M⋅L2⋅T−2 | energy | |||
Radiant flux | Φe | watt | W | M⋅L2⋅T−3 | radiant energy per unit time, also called radiant power. | |||
Spectral power | Φeλ | watt per metre | W⋅m−1 | M⋅L⋅T−3 | radiant power per wavelength. | |||
Radiant intensity | Ie | watt per steradian | W⋅sr−1 | M⋅L2⋅T−3 | power per unit solid angle. | |||
Spectral intensity | Ieλ | watt per steradian per metre | W⋅sr−1⋅m−1 | M⋅L⋅T−3 | radiant intensity per wavelength. | |||
Radiance | Le | watt per steradian per square metre | W⋅sr−1⋅m−2 | M⋅T−3 | power per unit solid angle per unit projected source area. confusingly called "intensity" in some other fields of study. |
|||
Spectral radiance | Leλ or Leν |
watt per steradian per metre3 or watt per steradian per square |
W⋅sr−1⋅m−3 or W⋅sr−1⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
commonly measured in W⋅sr−1⋅m−2⋅nm−1 with surface area and either wavelength or frequency. |
|||
Irradiance | Ee | watt per square metre | W⋅m−2 | M⋅T−3 | power incident on a surface, also called radiant flux density. sometimes confusingly called "intensity" as well. |
|||
Spectral irradiance | Eeλ or Eeν |
watt per metre3 or watt per square metre per hertz |
W⋅m−3 or W⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
commonly measured in W⋅m−2⋅nm−1 or 10−22W⋅m−2⋅Hz−1, known as solar flux unit. |
|||
Radiant exitance / Radiant emittance |
Me | watt per square metre | W⋅m−2 | M⋅T−3 | power emitted from a surface. | |||
Spectral radiant exitance / Spectral radiant emittance |
Meλ or Meν |
watt per metre3 or watt per square |
W⋅m−3 or W⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
power emitted from a surface per wavelength or frequency. |
|||
Radiosity | Je or Jeλ | watt per square metre | W⋅m−2 | M⋅T−3 | emitted plus reflected power leaving a surface. | |||
Radiant exposure | He | joule per square metre | J⋅m−2 | M⋅T−2 | ||||
Radiant energy density | ωe | joule per metre3 | J⋅m−3 | M⋅L−1⋅T−2 | ||||
See also: SI · Radiometry · Photometry · (Compare) |
Read more about this topic: Photometry (optics), Photometric Quantities
Famous quotes containing the word quantities:
“James Brown and Frank Sinatra are two different quantities in the universe. They represent two different experiences of the world.”
—Imamu Amiri Baraka [Everett Leroi Jones] (b. 1934)