# Partial Function

In mathematics, a partial function from X to Y is a function ƒ: X' → Y, where X' is a subset of X. It generalizes the concept of a function by not forcing f to map every element of X to an element of Y (only some subset X' of X). If X' = X, then ƒ is called a total function and is equivalent to a function. Partial functions are often used when the exact domain, X', is not known (e.g. many functions in computability theory).

Specifically, we will say that for any xX, either:

• ƒ(x) = yY (it is defined as a single element in Y) or
• ƒ(x) is undefined.

For example we can consider the square root function restricted to the integers

Thus g(n) is only defined for n that are perfect squares (i.e. 0, 1, 4, 9, 16, ...). So, g(25) = 5, but g(26) is undefined.

Read more about Partial Function:  Domain of A Partial Function, Total Function, Discussion and Examples

### Other articles related to "functions, partial functions, function, partial function, partial":

Algorithm Characterizations - 1943, 1952 Stephen Kleene's Characterization - 1952 "Turing's Thesis"
... the computability of "all computable functions" by the Turing machine model and its equivalents ... "computable" by casting the net wider—by allowing into the notion of "functions" both "total functions" and "partial functions" ... A total function is one that is defined for all natural numbers (positive integers including 0) ...
Semicomputable Function
... In computability theory, a semicomputable function is a partial function that can be approximated either from above or from below by a computable function ... More precisely a partial function is upper semicomputable, meaning it can be approximated from above, if there exists a computable function, where is the desired parameter ...
Abuse Of Notation - Bourbaki
... In other words, it is an abuse of language to refer to partial functions from E × E to E as "functions from E × E to E that are not everywhere defined." To clarify this, it ... A partial function from A to B is a function f A' → B, where A' is a subset of A ... A function not everywhere defined from A to B is a function f A' → B, where A' is a subset of A ...
Partial Function - Discussion and Examples - Bottom Type
... In some automated theorem proving systems a partial function is considered as returning the bottom type when it is undefined ... In computer science a partial function corresponds to a subroutine that raises an exception or loops forever ... In a programming language where function parameters are statically typed, a function may be defined as a partial function because the language's type system cannot express the exact domain of ...
Machine That Always Halts - Relationship To Partial Turing Machines
... A general Turing machine will compute a partial function ... Two questions can be asked about the relationship between partial Turing machines and total Turing machines Can every partial function computable by a partial ... The following theorem shows that the functions computable by machines that always halt do not include extensions of all partial computable functions, which implies the first ...

### Famous quotes containing the words function and/or partial:

The information links are like nerves that pervade and help to animate the human organism. The sensors and monitors are analogous to the human senses that put us in touch with the world. Data bases correspond to memory; the information processors perform the function of human reasoning and comprehension. Once the postmodern infrastructure is reasonably integrated, it will greatly exceed human intelligence in reach, acuity, capacity, and precision.
Albert Borgman, U.S. educator, author. Crossing the Postmodern Divide, ch. 4, University of Chicago Press (1992)

You must not be partial in judging: hear out the small and the great alike; you shall not be intimidated by anyone, for the judgment is God’s.
Bible: Hebrew, Deuteronomy 1:17.