Muon - History

History

Muons were discovered by Carl D. Anderson and Seth Neddermeyer at Caltech in 1936, while studying cosmic radiation. Anderson had noticed particles that curved differently from electrons and other known particles when passed through a magnetic field. They were negatively charged but curved less sharply than electrons, but more sharply than protons, for particles of the same velocity. It was assumed that the magnitude of their negative electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that their mass was greater than an electron but smaller than a proton. Thus Anderson initially called the new particle a mesotron, adopting the prefix meso- from the Greek word for "mid-". The existence of the muon was confirmed in 1937 by J. C. Street and E. C. Stevenson's cloud chamber experiment.

A particle with a mass in the meson range had been predicted before the discovery of any mesons, by theorist Hideki Yukawa:

"It seems natural to modify the theory of Heisenberg and Fermi in the following way. The transition of a heavy particle from neutron state to proton state is not always accompanied by the emission of light particles. The transition is sometimes taken up by another heavy particle."

Because of its mass, the mu meson was initially thought to be Yukawa's particle, but it later proved to have the wrong properties. Yukawa's predicted particle, the pi meson, was finally identified in 1947 (again from cosmic ray interactions), and shown to differ from the earlier-discovered mu meson by having the correct properties to be a particle which mediated the nuclear force.

With two particles now known with the intermediate mass, the more general term meson was adopted to refer to any such particle within the correct mass range between electrons and nucleons. Further, in order to differentiate between the two different types of mesons after the second meson was discovered, the initial mesotron particle was renamed the mu meson (the Greek letter μ (mu) corresponds to m), and the new 1947 meson (Yukawa's particle) was named the pi meson.

As more types of mesons were discovered in accelerator experiments later, it was eventually found that the mu meson significantly differed not only from the pi meson (of about the same mass), but also from all other types of mesons. The difference, in part, was that mu mesons did not interact with the nuclear force, as pi mesons did (and were required to do, in Yukawa's theory). Newer mesons also showed evidence of behaving like the pi meson in nuclear interactions, but not like the mu meson. Also, the mu meson's decay products included both a neutrino and an antineutrino, rather than just one or the other, as was observed in the decay of other charged mesons.

In the eventual Standard Model of particle physics codified in the 1970s, all mesons other than the mu meson were finally understood to be hadrons—that is, particles made of quarks—and thus subject to the nuclear force. In the quark model, a meson was no longer defined by mass (for some had been discovered that were very massive—more than the lightest nucleons), but instead were particles composed of exactly two quarks (a quark and antiquark), unlike the baryons, which are defined as particles composed of three quarks (protons and neutrons were the lightest baryons). Mu mesons, however, had shown themselves to be fundamental particles (leptons) like electrons, with no quark structure. Thus, mu mesons were not mesons at all, in the new sense and use of the term meson used with the quark model of particle structure.

With this change in definition, the term mu meson was abandoned, and replaced whenever possible with the modern term muon, making the term mu meson only historical. In the new quark model, other types of mesons sometimes continued to be referred to in shorter terminology (e.g., pion for pi meson), but in the case of the muon, it retained the shorter name and was never again properly referred to by older "mu meson" terminology.

The eventual recognition of the "mu meson" muon as a simple "heavy electron" with no role at all in the nuclear interaction, seemed so incongruous and surprising at the time, that Nobel laureate I. I. Rabi famously quipped, "Who ordered that?"

In the Rossi–Hall experiment (1941), muons were used to observe the time dilation (or alternately, length contraction) predicted by special relativity, for the first time.

Read more about this topic:  Muon

Other articles related to "history":

Spain - History - Fall of Muslim Rule and Unification
... The breakup of Al-Andalus into the competing taifa kingdoms helped the long embattled Iberian Christian kingdoms gain the initiative ... The capture of the strategically central city of Toledo in 1085 marked a significant shift in the balance of power in favour of the Christian kingdoms ...
Xia Dynasty - Modern Skepticism
... The Skeptical School of early Chinese history, started by Gu Jiegang in the 1920s, was the first group of scholars within China to seriously question the traditional story of its early ... early Chinese history is a tale told and retold for generations, during which new elements were added to the front end" ...
Casino - History of Gambling Houses
... has been seen in almost every society in history ... From the Ancient Greeks and Romans to Napoleon's France and Elizabethan England, much of history is filled with stories of entertainment based on games of chance ... In American history, early gambling establishments were known as saloons ...
Voltaire - Works - Historical
... History of Charles XII, King of Sweden (1731) The Age of Louis XIV (1751) The Age of Louis XV (1746–1752) Annals of the Empire – Charlemagne, A.D ... II (1754) Essay on the Manners of Nations (or 'Universal History') (1756) History of the Russian Empire Under Peter the Great (Vol ... II 1763) History of the Parliament of Paris (1769) ...
History of Computing
... The history of computing is longer than the history of computing hardware and modern computing technology and includes the history of methods intended for pen and paper or for chalk and slate, with or without ...

Famous quotes containing the word history:

    Gossip is charming! History is merely gossip. But scandal is gossip made tedious by morality.
    Oscar Wilde (1854–1900)

    Let it suffice that in the light of these two facts, namely, that the mind is One, and that nature is its correlative, history is to be read and written.
    Ralph Waldo Emerson (1803–1882)

    A country grows in history not only because of the heroism of its troops on the field of battle, it grows also when it turns to justice and to right for the conservation of its interests.
    Aristide Briand (1862–1932)