Recovery Process
The excess black liquor is at about 15% solids and is concentrated in a multiple effect evaporator. After the first step the black liquor is about 20 - 30% solids. At this concentration the rosin soap rises to the surface and is skimmed off. The collected soap is further processed to tall oil. Removal of the soap improves the evaporation operation of the later effects.
The weak black liquor is further evaporated to 65% or even 80% solids ("heavy black liquor") and burned in the recovery boiler to recover the inorganic chemicals for reuse in the pulping process. Higher solids in the concentrated black liquor increases the energy and chemical efficiency of the recovery cycle, but also gives higher viscosity and precipitation of solids (plugging and fouling of equipment). The combustion is carried out such that sodium sulfate is reduced to sodium sulfide by the organic carbon in the mixture:
- 1. Na2SO4 + 2 C → Na2S + 2 CO2
This reaction is similar to thermochemical sulfate reduction in geochemistry.
The molten salts ("smelt") from the recovery boiler are dissolved in a process water known as "weak wash". This process water, also known as "weak white liquor" is composed of all liquors used to wash lime mud and green liquor precipitates. The resulting solution of sodium carbonate and sodium sulfide is known as "green liquor", although it is not known exactly what causes the liquor to be green. This liquid is mixed with calcium oxide, which becomes calcium hydroxide in solution, to regenerate the white liquor used in the pulping process through an equilibrium reaction (Na2S is shown since it is part of the green liquor, but does not participate in the reaction):
- 2. Na2S + Na2CO3 + Ca(OH)2 ←→ Na2S + 2 NaOH + CaCO3
Calcium carbonate precipitates from the white liquor and is recovered and heated in a lime kiln where it is converted to calcium oxide (lime).
- 3. CaCO3 → CaO + CO2
Calcium oxide (lime) is reacted with water to regenerate the calcium hydroxide used in Reaction 2:
- 4. CaO + H2O → Ca(OH)2
The combination of reactions 1 through 4 form a closed cycle with respect to sodium, sulfur and calcium and is the main concept of the so-called recausticizing process where sodium carbonate is reacted to regenerate sodium hydroxide.
The recovery boiler also generates high pressure steam which is fed to turbogenerators, reducing the steam pressure for the mill use and generating electricity. A modern kraft pulp mill is more than self-sufficient in its electrical generation and normally will provide a net flow of energy which can be used by an associated paper mill or sold to neighboring industries or communities through to the local electrical grid. Additionally, bark and wood residues are often burned in a separate power boiler to generate steam.
Although recovery boilers using G.H. Tomlinson's invention have been in general use since the early 1930s attempts have been made to find a more efficient process for the recovery of cooking chemicals. Weyerhaeuser has operated a Chemrec first generation black liquor entrained flow gasifier successfully at its New Bern plant in North Carolina, while a second generation plant is run in pilot scale at Smurfit Kappa's plant in Piteå, Sweden.
Read more about this topic: Kraft Process, The Process
Famous quotes containing the words recovery and/or process:
“Its even pleasant to be sick when you know that there are people who await your recovery as they might await a holiday.”
—Anton Pavlovich Chekhov (18601904)
“At the heart of the educational process lies the child. No advances in policy, no acquisition of new equipment have their desired effect unless they are in harmony with the child, unless they are fundamentally acceptable to him.”
—Central Advisory Council for Education. Children and Their Primary Schools (Plowden Report)