Isomorphism Theorem - General

General

To generalise this to universal algebra, normal subgroups need to be replaced by congruences.

A congruence on an algebra is an equivalence relation which is a subalgebra of endowed with the component-wise operation structure. One can make the set of equivalence classes into an algebra of the same type by defining the operations via representatives; this will be well-defined since is a subalgebra of .

Read more about this topic:  Isomorphism Theorem

Famous quotes containing the word general:

    The general feeling was, and for a long time remained, that one had several children in order to keep just a few. As late as the seventeenth century . . . people could not allow themselves to become too attached to something that was regarded as a probable loss. This is the reason for certain remarks which shock our present-day sensibility, such as Montaigne’s observation, “I have lost two or three children in their infancy, not without regret, but without great sorrow.”
    Philippe Ariés (20th century)

    Every writer is necessarily a critic—that is, each sentence is a skeleton accompanied by enormous activity of rejection; and each selection is governed by general principles concerning truth, force, beauty, and so on.... The critic that is in every fabulist is like the iceberg—nine-tenths of him is under water.
    Thornton Wilder (1897–1975)

    One general builds his success on ten thousand bleaching bones.
    Chinese proverb.