Homotopy Groups of Spheres - General Theory

General Theory

As noted already, when i is less than n, πi(Sn) = 0, the trivial group (Hatcher 2002). The reason is that a continuous mapping from an i-sphere to an n-sphere with i < n can always be deformed so that it is not surjective. Consequently, its image is contained in Sn with a point removed; this is a contractible space, and any mapping to such a space can be deformed into a one-point mapping.

The case i = n has also been noted already, and is an easy consequence of the Hurewicz theorem: this theorem links homotopy groups with homology groups, which are generally easier to calculate; in particular, it shows that for a simply-connected space X, the first nonzero homotopy group πk(X), with k > 0, is isomorphic to the first nonzero homology group Hk(X). For the n-sphere, this immediately implies that for n > 0, πn(Sn) = Hn(Sn) = Z.

The homology groups Hi(Sn), with i > n, are all trivial. It therefore came as a great surprise historically that the corresponding homotopy groups are not trivial in general. This is the case that is of real importance: the higher homotopy groups πi(Sn), for i > n, are surprisingly complex and difficult to compute, and the effort to compute them has generated a significant amount of new mathematics.

Read more about this topic:  Homotopy Groups Of Spheres

Famous quotes containing the words general and/or theory:

    No doubt, the short distance to which you can see in the woods, and the general twilight, would at length react on the inhabitants, and make them savages. The lakes also reveal the mountains, and give ample scope and range to our thought.
    Henry David Thoreau (1817–1862)

    Could Shakespeare give a theory of Shakespeare?
    Ralph Waldo Emerson (1803–1882)