Product Monoids and Projection
Let
denote an n-tuple of alphabets . Let denote all possible combinations of finite-length strings from the alphabets:
(In more formal language, is the Cartesian product of the free monoids of the . The superscript star is the Kleene star.) Composition in the product monoid is component-wise, so that, for
and
then
for all in . Define the union alphabet to be
(The union here is the set union, not the disjoint union.) Given any string, we can pick out just the letters in some using the corresponding string projection . A distribution is the mapping that operates on with all of the, separating it into components in each free monoid:
Read more about this topic: History Monoid
Famous quotes containing the words product and/or projection:
“[As teenager], the trauma of near-misses and almost- consequences usually brings us to our senses. We finally come down someplace between our parents safety advice, which underestimates our ability, and our own unreasonable disregard for safety, which is our childlike wish for invulnerability. Our definition of acceptable risk becomes a product of our own experience.”
—Roger Gould (20th century)
“In the case of our main stock of well-worn predicates, I submit that the judgment of projectibility has derived from the habitual projection, rather than the habitual projection from the judgment of projectibility. The reason why only the right predicates happen so luckily to have become well entrenched is just that the well entrenched predicates have thereby become the right ones.”
—Nelson Goodman (b. 1906)