Hawaii Hotspot - Characteristics - Topography and Geoid

Topography and Geoid

A detailed topographic analysis of the Hawaiian – Emperor seamount chain reveals the hotspot as the center of a topographic high, and that elevation falls with distance from the hotspot. The most rapid decrease in elevation and the highest ratio between the topography and geoid height are over the southeastern part of the chain, falling with distance from the hotspot, particularly at the intersection of the Molokai and Murray fracture zones. The most likely explanation is that the region between the two zones is more susceptible to reheating than most of the chain. Another possible explanation is that the hotspot strength swells and subsides over time.

In 1953, Robert S. Dietz and his colleagues first identified the swell behavior. It was suggested that the cause was mantle upwelling. Later work pointed to tectonic uplift, caused by reheating within the lower lithosphere. However, normal seismic activity beneath the swell, as well as lack of detected heat flow, caused scientists to suggest dynamic topography as the cause, in which the motion of the hot and buoyant mantle plume supports the high surface topography around the islands. Understanding the Hawaiian swell has important implications for hotspot study, island formation, and inner Earth.

Read more about this topic:  Hawaii Hotspot, Characteristics

Famous quotes containing the word topography:

    That the mere matter of a poem, for instance—its subject, its given incidents or situation; that the mere matter of a picture—the actual circumstances of an event, the actual topography of a landscape—should be nothing without the form, the spirit of the handling, that this form, this mode of handling, should become an end in itself, should penetrate every part of the matter;Mthis is what all art constantly strives after, and achieves in different degrees.
    Walter Pater (1839–1894)