In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process is a method for orthonormalising a set of vectors in an inner product space, most commonly the Euclidean space Rn. The Gram–Schmidt process takes a finite, linearly independent set S = {v1, …, vk} for k ≤ n and generates an orthogonal set S′ = {u1, …, uk} that spans the same k-dimensional subspace of Rn as S.
The method is named after Jørgen Pedersen Gram and Erhard Schmidt but it appeared earlier in the work of Laplace and Cauchy. In the theory of Lie group decompositions it is generalized by the Iwasawa decomposition.
The application of the Gram–Schmidt process to the column vectors of a full column rank matrix yields the QR decomposition (it is decomposed into an orthogonal and a triangular matrix).
Read more about Gram–Schmidt Process: The Gram–Schmidt Process, Example, Numerical Stability, Algorithm, Determinant Formula, Alternatives
Famous quotes containing the word process:
“Any balance we achieve between adult and parental identities, between childrens and our own needs, works only for a timebecause, as one father says, Its a new ball game just about every week. So we are always in the process of learning to be parents.”
—Joan Sheingold Ditzion, Dennie, and Palmer Wolf. Ourselves and Our Children, by Boston Womens Health Book Collective, ch. 2 (1978)