Examples
Let A = K be the ring of polynomials in n variables over a field K. Then the global dimension of A is equal to n. This statement goes back to David Hilbert's foundational work on homological properties of polynomial rings, see Hilbert's syzygy theorem. More generally, if R is a Noetherian ring of finite global dimension k and A = R is a ring of polynomials in one variable over R then the global dimension of A is equal to k + 1.
The first Weyl algebra A1 is a noncommutative Noetherian domain of global dimension one.
A ring has global dimension zero if and only if it is semisimple. The global dimension of a ring A is less than or equal to one if and only if A is hereditary. In particular, a commutative principal ideal domain which is not a field has global dimension one.
Read more about this topic: Global Dimension
Famous quotes containing the word examples:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)