Gliding Flight - Importance of The Glide Ratio in Gliding Flight

Importance of The Glide Ratio in Gliding Flight

Although the best glide ratio is important when measuring the performance of a gliding aircraft, its glide ratio at a range of speeds also determines its success (see article on gliding).

Pilots sometimes fly at the aircraft's best L/D by precisely controlling airspeed and smoothly operating the controls to reduce drag. However the strength of the likely next lift and the strength of the wind also affects the optimal speed to fly. To achieve higher speed across country, gliders (sailplanes) are often loaded with water ballast to increase the airspeed and so reach the next area of lift sooner. This has little effect on the glide angle but increases rate of sink (and speed over ground in proportion) because the heavier aircraft achieves optimal L/D at a higher airspeed.

If the air is rising faster than the rate of sink, the aircraft will climb. At lower speeds an aircraft may have a worse glide ratio but it will also have a lower rate of sink. A low airspeed also improves its ability to turn tightly in centre of the rising air where the rate of ascent is greatest. A sink rate of approximately 1.0 m/s is the most that a practical hang glider or paraglider could have before it would limit the occasions that a climb was possible to only when there was strongly rising air. Gliders (sailplanes) have minimum sink rates of between 0.4 and 0.6 m/s depending on the class. Aircraft such as airliners may have a better glide ratio than a hang glider, but would rarely be able to thermal because of their much higher forward speed and their much higher sink rate. (Note that the Boeing 767 in the Gimli Glider incident achieved a glide ratio of only 12:1.)

During landing, a high lift/drag ratio is desirable. Some aircraft therefore employ flaps, to increase their performance at lower speeds. Experiments with lifting bodies show that a lift/drag ratio below about 2 makes landing very difficult because of the high rate of descent.

The loss of height can be measured at several speeds and plotted on a "polar curve" to calculate the best speed to fly in various conditions, such as when flying into wind or when in sinking air. Other polar curves can be measured after loading the glider with water ballast. As mass increases, the best glide ratio is achieved at higher speeds. (The glide ratio is not increased.)

Read more about this topic:  Gliding Flight

Famous quotes containing the words importance of, importance, glide, ratio, gliding and/or flight:

    Society is the stage on which manners are shown; novels are the literature. Novels are the journal or record of manners; and the new importance of these books derives from the fact, that the novelist begins to penetrate the surface, and treat this part of life more worthily.
    Ralph Waldo Emerson (1803–1882)

    There is, I think, no point in the philosophy of progressive education which is sounder than its emphasis upon the importance of the participation of the learner in the formation of the purposes which direct his activities in the learning process, just as there is no defect in traditional education greater than its failure to secure the active cooperation of the pupil in construction of the purposes involved in his studying.
    John Dewey (1859–1952)

    All things change, nothing is extinguished.... There is nothing in the whole world which is permanent. Everything flows onward; all things are brought into being with a changing nature; the ages themselves glide by in constant movement.
    Ovid (Publius Ovidius Naso)

    Personal rights, universally the same, demand a government framed on the ratio of the census: property demands a government framed on the ratio of owners and of owning.
    Ralph Waldo Emerson (1803–1882)

    I stand on a bridge of one span
    and see this calm act, this gathering up
    of life, of spring water
    and the Muse gliding ...
    Denise Levertov (b. 1923)

    When the flight is not high the fall is not heavy.
    Chinese proverb.