Frobenius–Schur Indicator - Higher Frobenius-Schur Indicators

Higher Frobenius-Schur Indicators

Just as for any complex representation ρ,

is a self-intertwiner, for any integer n,

is also a self-intertwiner. By Schur's lemma, this will be a multiple of the identity for irreducible representations. The trace of this self-intertwiner is called the nth Frobenius-Schur indicator.

The original case of the Frobenius-Schur indicator is that for n = 2. The zeroth indicator is the dimension of the irreducible representation, the first indicator would be 1 for the trivial representation and zero for the other irreducible representations.

It resembles the Casimir invariants for Lie algebra irreducible representations. In fact, since any rep of G can be thought of as a module for C and vice versa, we can look at the center of C. This is analogous to looking at the center of the universal enveloping algebra of a Lie algebra. It is simple to check that

belongs to the center of C, which is simply the subspace of class functions on G.

Read more about this topic:  Frobenius–Schur Indicator

Famous quotes containing the word higher:

    They had their fortunes to make, everything to gain and nothing to lose. They were schooled in and anxious for debates; forcible in argument; reckless and brilliant. For them it was but a short and natural step from swaying juries in courtroom battles over the ownership of land to swaying constituents in contests for office. For the lawyer, oratory was the escalator that could lift a political candidate to higher ground.
    —Federal Writers’ Project Of The Wor, U.S. public relief program (1935-1943)