Convection–diffusion Equation - Similar Equations in Other Contexts

Similar Equations in Other Contexts

The convection–diffusion equation is a relatively simple equation describing flows, or alternatively, describing a stochastically-changing system. Therefore, the same or similar equation arises in many contexts unrelated to flows through space.

  • It is formally identical to the Fokker–Planck equation for the velocity of a particle.
  • It is closely related to the Black–Scholes equation and other equations in financial mathematics.
  • It is closely related to the Navier–Stokes equations, because the flow of momentum in a fluid is mathematically similar to the flow of mass or energy. The correspondence is clearest in the case of an incompressible Newtonian fluid, in which case the Navier–Stokes equation is:

where M is the momentum of the fluid (per unit volume) at each point (equal to the density multiplied by the velocity v), is viscosity, P is fluid pressure, and f is any other body force such as gravity. In this equation, the term on the left-hand side describes the change in momentum at a given point; the first term on the right describes viscosity, which is really the diffusion of momentum; the second term on the right describes the advective flow of momentum; and the last two terms on the right describes the external and internal forces which can act as sources or sinks of momentum.

Read more about this topic:  Convection–diffusion Equation

Famous quotes containing the words similar and/or contexts:

    Mistakes, scandals, and failures no longer signal catastrophe. The crucial thing is that they be made credible, and that the public be made aware of the efforts being expended in that direction. The “marketing” immunity of governments is similar to that of the major brands of washing powder.
    Jean Baudrillard (b. 1929)

    The “text” is merely one of the contexts of a piece of literature, its lexical or verbal one, no more or less important than the sociological, psychological, historical, anthropological or generic.
    Leslie Fiedler (b. 1917)