Examples
- The Hilbert-Schmidt operators on an infinite-dimensional Hilbert space form a Hilbert algebra with inner product (a,b) = Tr (b*a).
- If (X, μ) is an infinite measure space, the algebra L∞ (X) L2(X) is a Hilbert algebra with the usual inner product from L2(X).
- If M is a von Neumann algebra with faithful semifinite trace τ, then the *-subalgebra M0 defined above is a Hilbert algebra with inner product (a, b) = τ(b*a).
- If G is a unimodular locally compact group, the convolution algebra L1(G)L2(G) is a Hilbert algebra with the usual inner product from L2(G).
- If (G, K) is a Gelfand pair, the convolution algebra L1(K\G/K)L2(K\G/K) is a Hilbert algebra with the usual inner product from L2(G); here Lp(K\G/K) denotes the closed subspace of K-biinvariant functions in Lp(G).
- Any dense *-subalgebra of a Hilbert algebra is also a Hilbert algebra.
Read more about this topic: Commutation Theorem, Hilbert Algebras
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)