Applications
These basic components can be used for a variety of applications and all share a common production platform. In his comments upon the grant’s award, William Sargeant, the National Science Foundation program officer who oversaw Chiral Photonics' first SBIR award, noted the range of existing and incipient markets. "This technology could be one of the most significant recent advances in the field of polarization and wavelength control. There is an enormous host of applications for which chiral fiber gratings could find markets."
Chiral Photonics’ components are all of the all-fiber variety. Released products include linear and circular polarizers, ultra-high temperature sensors, customized harsh environment pressure, axial rotation, and liquid level sensors, and a spot size converting interconnect.
The spot size converter, while not of chiral geometry, leverages the company’s glass microfabrication knowhow. The spot size converter (SSC) couples light between widely disparate (NA and MFD) components, such as, between <25 micrometre planar waveguides or laser diodes, and standard 125 micrometre SMF fiber. The SSC allows for direct light coupling with no air gap, sub-0.5dB loss, and extinction ratios of >20 dB for use in silicon photonics and other applications.
Chiral Photonics also offers twisted capillary tubes for proteomic analysis. The protein unfolds as it passes through the channel allowing for imaging. In other uses the rotation of the protein as it passes through the channel facilitates 360° imaging. The capillary tubes also have other microfluidic applications including mixing and uniform heat exchange.
In the near term the company plans to release an all-fiber isolator as well as a narrow linewidth laser. In the longer term, the company aims to release products based on thin-film application of its technology, including a higher resolution OLED and a dual-mode OLED screen/projector for cell phone and other handheld device use.
Read more about this topic: Chiral Photonics