**Mathematics**

Peirce's most important work in pure mathematics was in logical and foundational areas. He also worked on linear algebra, matrices, various geometries, topology and Listing numbers, Bell numbers, graphs, the four-color problem, and the nature of continuity.

He worked on applied mathematics in economics, engineering, and map projections (such as the Peirce quincuncial projection), and was especially active in probability and statistics.

- Discoveries

Peirce made a number of striking discoveries in formal logic and foundational mathematics, nearly all of which came to be appreciated only long after he died:

In 1860 he suggested a cardinal arithmetic for infinite numbers, years before any work by Georg Cantor (who completed his dissertation in 1867) and without access to Bernard Bolzano's 1851 (posthumous) *Paradoxien des Unendlichen*.

symbol for "(neither)...

**nor**...", also called the Quine dagger.

In 1880–81 he showed how Boolean algebra could be done via a repeated sufficient single binary operation (logical NOR), anticipating Henry M. Sheffer by 33 years. (See also De Morgan's Laws).

In 1881 he set out the axiomatization of natural number arithmetic, a few years before Richard Dedekind and Giuseppe Peano. In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "Dedekind-finite", and implied by the same stroke an important formal definition of an infinite set (Dedekind-infinite), as a set that can be put into a one-to-one correspondence with one of its proper subsets.

In 1885 he distinguished between first-order and second-order quantification. In the same paper he set out what can be read as the first (primitive) axiomatic set theory, anticipating Zermelo by about two decades (Brady 2000, pp. 132–3).

In 1886 he saw that Boolean calculations could be carried out via electrical switches, anticipating Claude Shannon by more than 50 years.

By the later 1890s he was devising existential graphs, a diagrammatic notation for the predicate calculus. Based on them are John F. Sowa's conceptual graphs and Sun-Joo Shin's diagrammatic reasoning.

*The New Elements of Mathematics*

Peirce wrote drafts for an introductory textbook, with the working title *The New Elements of Mathematics*, that presented mathematics from an original standpoint. Those drafts and many other of his previously unpublished mathematical manuscripts finally appeared in *The New Elements of Mathematics by Charles S. Peirce* (1976), edited by mathematician Carolyn Eisele.

- Nature of mathematics

Peirce agreed with Auguste Comte in regarding mathematics as more basic than philosophy and the special sciences (of nature and mind). Peirce classified mathematics into three subareas: (1) mathematics of logic, (2) discrete series, and (3) pseudo-continua (as he called them, including the real numbers) and continua. Influenced by his father Benjamin, Peirce argued that mathematics studies purely hypothetical objects and is not just the science of quantity but is more broadly the science which draws necessary conclusions; that mathematics aids logic, not vice versa; and that logic itself is part of philosophy and is the science *about* drawing conclusions necessary and otherwise.

Read more about this topic: Charles Sanders Peirce

### Other articles related to "mathematics":

**Mathematics**- Foundational Crisis - Philosophical Views - Logicism

... one of the schools of thought in the philosophy of

**mathematics**, putting forth the theory that

**mathematics**is an extension of logic and therefore some or all

**mathematics**is reducible to logic ...

... Toeplitz's father and grandfather were

**mathematics**teachers ... Toeplitz studied

**mathematics**in the University of Breslau and was awarded a doctorate in algebraic geometry in 1905 ...

**Mathematics**faculty included David Hilbert, Felix Klein, and Hermann Minkowski ...

**Mathematics**As Science

... Gauss referred to

**mathematics**as "the Queen of the Sciences" ... Of course,

**mathematics**is in this sense a field of knowledge ... of empirical experimentation and observation is negligible in

**mathematics**, compared to natural sciences such as psychology, biology, or physics ...

... He graduated from technical

**mathematics**at the Department of

**mathematics**and physics of then Faculty for natural sciences and technology (FNT) of the University of Ljubljana ... He taught and solved problems from many fields the usage of

**mathematics**in natural and social sciences, statistics, mechanics, classical applied

**mathematics**, discrete

**mathematics**, graph and network ...

### Famous quotes containing the word mathematics:

“*Mathematics* alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we don’t happen to have all the data. In *mathematics* we have all the data ... and yet we don’t understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of *mathematics* is in relation to our intelligence.”

—Simone Weil (1909–1943)

“I must study politics and war that my sons may have liberty to study *mathematics* and philosophy.”

—John Adams (1735–1826)

“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of *mathematics* under the new names logicism, intuitionism, and formalism.”

—Willard Van Orman Quine (b. 1908)