Non-computability of Σ
Radó's 1962 paper proved that if f: N → N is any computable function, then Σ(n) > f(n) for all sufficiently large n, and hence that Σ is not a computable function.
Moreover, this implies that it is undecidable by a general algorithm whether an arbitrary Turing machine is a busy beaver. (Such an algorithm cannot exist, because its existence would allow Σ to be computed, which is a proven impossibility. In particular, such an algorithm could be used to construct another algorithm that would compute Σ as follows: for any given n, each of the finitely many n-state 2-symbol Turing machines would be tested until an n-state busy beaver is found; this busy beaver machine would then be simulated to determine its score, which is by definition Σ(n).)
Even though Σ(n) is an uncomputable function, there are some small n for which it is possible to obtain its values and prove that they are correct. It is not hard to show that Σ(0) = 0, Σ(1) = 1, Σ(2) = 4, and with progressively more difficulty it can be shown that Σ(3) = 6 and Σ(4) = 13 (sequence A028444 in OEIS). Σ(n) has not yet been determined for any instance of n > 4, although lower bounds have been established (see the Known Values section below).
Read more about this topic: Busy Beaver