In mathematics, a group scheme is a type of algebro-geometric object equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexandre Grothendieck, Michel Raynaud, and Michel Demazure in the early 1960s.
Read more about Group Scheme: Definition, Constructions, Examples, Basic Properties, Finite Flat Group Schemes, Cartier Duality, Dieudonné Modules
Famous quotes containing the words group and/or scheme:
“Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.”
—Jean Dubuffet (19011985)
“The real security of Christianity is to be found in its benevolent morality, in its exquisite adaptation to the human heart, in the facility with which its scheme accommodates itself to the capacity of every human intellect, in the consolation which it bears to the house of mourning, in the light with which it brightens the great mystery of the grave.”
—Thomas Babington Macaulay (18001859)