Antibiotic Resistance

Antibiotic resistance is a form of drug resistance whereby some (or, less commonly, all) sub-populations of a microorganism, usually a bacterial species, are able to survive exposure to one or more antibiotics. Accordingly, pathogenic species which have become resistant cause infections which can not be treated with the usual, formerly efficacious antibiotic drugs and/or their usual, formerly efficacious, dosages and concentrations. Resistance may be instrinsic or acquired. Some clinically relevant pathogens have developed resistance to multiple antibiotics and are dubbed multidrug resistant (MDR pathogens). More recently, the colloquial term superbug has become widespread in both popular and technical accounts of the phenomenon with which it is synonymous.

Antibiotic resistance is a serious and growing phenomenon in contemporary medicine and has emerged as one of the eminent public health concerns of the 21st century, particularly as it pertains to pathogenic organisms (the term is not especially relevant to organisms which don't cause disease in humans). In the simplest cases, drug-resistant organisms may have acquired resistance to first-line antibiotics, thereby necessitating the use of second-line agents. Typically, the first-line agent is selected on the basis of several advantages including safety, availability and cost; comparatively, the second-line agent is usually broader in spectrum, possesses a less favourable risk-benefit profile and may be more expensive or, in more dire circumstances, locally unavailable. In the case of some MDR pathogens, resistance to second and even third-line antibiotics is sequentially acquired, a case quintessentially illustrated by Staphylococcus aureus in some nosocomial settings. Some pathogens, such as Pseudomonas aeruginosa, additionally possess a high level of intrinsic resistance.

It may take the form of a spontaneous or induced genetic mutation, or the acquisition of resistance genes from other bacterial species by horizontal gene transfer via conjugation, transduction, or transformation. Many antibiotic resistance genes reside on transmissible plasmids, facilitating their transfer. Exposure to an antibiotic naturally selects for the survival of the organisms with the genes for resistance. In this way, a gene for antibiotic resistance may readily spread through an ecosystem of bacteria. Antibiotic-resistance plasmids frequently contain genes conferring resistance to several different antibiotics.

Genes for resistance to antibiotics, like the antibiotics themselves, are ancient. However, the increasing prevalence of antibiotic-resistant bacterial infections seen in clinical practice stems from antibiotic use both within human medicine and veterinary medicine. Any use of antibiotics can increase selective pressure in a population of bacteria to allow the resistant bacteria to thrive and the susceptible bacteria to die off. As resistance towards antibiotics becomes more common, a greater need for alternative treatments arises. However, despite a push for new antibiotic therapies there has been a continued decline in the number of newly approved drugs. Antibiotic resistance therefore poses a significant problem.

The growing prevalence and incidence of infections due to MDR pathogens is epitomised by the increasing number of familiar acronyms used to describe the causative agent and sometimes the infection generally; of these, MRSA is probably the most well-known, but others including VISA (vancomycin-intermediate S. aureus), VRSA (vancomycin-resistant S. aureus), ESBL (Extended spectrum beta-lactamase), VRE (Vancomycin-resistant Enterococcus) and MRAB (Multidrug-resistant A. baumannii) are prominent examples. Nosocomial infections overwhelmingly dominate cases where MDR pathogens are implicated, but multidrug-resistant infections are also becoming increasingly prevalent in the community.

Read more about Antibiotic ResistanceCauses, Mechanisms

Other articles related to "antibiotic resistance, resistance, antibiotic, antibiotics":

Chicken Dishes - Health Issues - Antibiotic Resistance
... obtained by the Canadian Integrated Program for Antimicrobial Resistance (CIPARS) “strongly indicates that cephalosporin resistance in humans is moving in lockstep with ... Although the data are contested by the industry, antibiotic resistance in humans appears to be directly related to the antibiotic's use in eggs ... aureus, with more than half (52%) of those bacteria resistant to antibiotics ...
Antibiotic Resistance - Research - Applications
... Antibiotic resistance is an important tool for genetic engineering ... By constructing a plasmid that contains an antibiotic resistance gene as well as the gene being engineered or expressed, a researcher can ensure that when bacteria replicate, only the ... The most commonly used antibiotics in genetic engineering are generally "older" antibiotics that have largely fallen out of use in clinical practice ...
Lactobacillus Fermentum - Antibiotic Resistance - Drug Resistance Plasmids
... Research done on Lactobacillus fermentum strains has revealed the existence of tetracycline and erythromycin resistance plasmids. ...

Famous quotes containing the word resistance:

    How is freedom measured, in individuals as in nations? By the resistance which has to be overcome, by the effort it costs to stay aloft. One would have to seek the highest type of free man where the greatest resistance is constantly being overcome: five steps from tyranny, near the threshold of the danger of servitude.
    Friedrich Nietzsche (1844–1900)