Oscilloscope - Features and Uses - Description - Probes

Probes

Open wire test leads (flying leads) are likely to pick up interference, so they are not suitable for low level signals. Furthermore, the leads have a high inductance, so they are not suitable for high frequencies. Using a shielded cable (i.e., coaxial cable) is better for low level signals. Coaxial cable also has lower inductance, but it has higher capacitance: a typical 50 ohm cable has about 90 pF per meter. Consequently, a one meter direct (1X) coaxial probe will load a circuit with a capacitance of about 110 pF and a resistance of 1 megohm.

To minimize loading, attenuator probes (e.g., 10X probes) are used. A typical probe uses a 9 megohm series resistor shunted by a low-value capacitor to make an RC compensated divider with the cable capacitance and scope input. The RC time constants are adjusted to match. For example, the 9 megohm series resistor is shunted by a 12.2 pF capacitor for a time constant of 110 microseconds. The cable capacitance of 90 pF in parallel with the scope input of 20 pF and 1 megohm (total capacitance 110 pF) also gives a time constant of 110 microseconds. In practice, there will be an adjustment so the operator can precisely match the low frequency time constant (called compensating the probe). Matching the time constants makes the attenuation independent of frequency. At low frequencies (where the resistance of R is much less than the reactance of C), the circuit looks like a resistive divider; at high frequencies (resistance much greater than reactance), the circuit looks like a capacitive divider.

The result is a frequency compensated probe for modest frequencies that presents a load of about 10 megohms shunted by 12 pF. Although such a probe is an improvement, it does not work when the time scale shrinks to several cable transit times (transit time is typically 5 ns). In that time frame, the cable looks like its characteristic impedance, and there will be reflections from the transmission line mismatch at the scope input and the probe that causes ringing. The modern scope probe uses lossy low capacitance transmission lines and sophisticated frequency shaping networks to make the 10X probe perform well at several hundred megahertz. Consequently, there are other adjustments for completing the compensation.

Probes with 10:1 attenuation are by far the most common; for large signals (and slightly-less capacitive loading), 100:1 probes are not rare. There are also probes that contain switches to select 10:1 or direct (1:1) ratios, but one must be aware that the 1:1 setting has significant capacitance (tens of pF) at the probe tip, because the whole cable's capacitance is now directly connected.

Good oscilloscopes allow for probe attenuation, easily showing effective sensitivity at the probe tip. Some of the best ones have indicator lamps behind translucent windows in the panel to prompt the user to read effective sensitivity. The probe connectors (modified BNCs) have an extra contact to define the probe's attenuation. (A certain value of resistor, connected to ground, "encodes" the attenuation.)

There are special high-voltage probes which also form compensated attenuators with the oscilloscope input; the probe body is physically large, and one made by Tektronix requires partly filling a canister surrounding the series resistor with volatile liquid fluorocarbon to displace air. At the oscilloscope end is a box with several waveform-trimming adjustments. For safety, a barrier disc keeps one's fingers distant from the point being examined. Maximum voltage is in the low tens of kV. (Observing a high-voltage ramp can create a staircase waveform with steps at different points every repetition, until the probe tip is in contact. Until then, a tiny arc charges the probe tip, and its capacitance holds the voltage (open circuit). As the voltage continues to climb, another tiny arc charges the tip further.)

There are also current probes, with cores that surround the conductor carrying current to be examined. One type has a hole for the conductor, and requires that the wire be passed through the hole; they are for semi-permanent or permanent mounting. However, other types, for testing, have a two-part core that permit them to be placed around a wire. Inside the probe, a coil wound around the core provides a current into an appropriate load, and the voltage across that load is proportional to current. However, this type of probe can sense AC, only.

A more-sophisticated probe (originally made by Tektronix) includes a magnetic flux sensor (Hall effect sensor) in the magnetic circuit. The probe connects to an amplifier, which feeds (low frequency) current into the coil to cancel the sensed field; the magnitude of that current provides the low-frequency part of the current waveform, right down to DC. The coil still picks up high frequencies. There is a combining network akin to a loudspeaker crossover network.

Read more about this topic:  Oscilloscope, Features and Uses, Description

Other articles related to "probes, probe":

MAGIChip - Types - Oligonucleotide Chips
... success of the microarray depends on the proper choice of probes in these cases ... A set of potential hybridization probes are created for each DNA sequence that form perfect duplexes with that sequence ... The potential probes that may create ambiguities in the interpretation of the hybridization pattern are excluded on the basis of AT vs GC content, and the propensity to form hairpins and other types of ...
MAGIChip - Method
... is followed by application and chemical immobilization of different compounds (probes) onto these gel pads ... is then added to this micromatrix containing immobilized probes in gel pads and molecular recognition reactions are allowed to take place under specified conditions ... Probe activation depends on the chemistry of activation of the polyacrylamide gels ...
Corrupt Practices Investigation Bureau - Probes
... High profile probes are rare ... Teo Chee Hean defended the CPIB, stating that any announcement on the outcome of the probe would have been premature and may have compromised the investigation ...
List Of Active Solar System Probes
... This is a list of active probes which have escaped Earth orbit ... It includes lunar probes, but does not include probes orbiting at the Sun-Earth Lagrangian points (for these, see List of objects at Lagrangian points) ... Once a probe has reached its first primary target, it is no longer listed as "en route" whether or not further travel is involved ...
Avalanche Rescue - Search and Rescue Equipment - Probes
... Portable (collapsible) probes can be extended to probe into the snow to locate the exact location of a victim at several yards / metres in depth ... When multiple victims are buried, probes should be used to decide the order of rescue, with the shallowest being dug out first since they have the greatest chance of survival ... Probes should be used immediately after a visual search for surface clues, in coordination with the beacon search ...