Uniformizable Space - Fine Uniformity

Given a uniformizable space X there is a finest uniformity on X compatible with the topology of X called the fine uniformity or universal uniformity. A uniform space is said to be fine if it has the fine uniformity generated by its uniform topology.

The fine uniformity is characterized by the universal property: any continuous function f from a fine space X to a uniform space Y is uniformly continuous. This implies that the functor F : CRegUni which assigns to any completely regular space X the fine uniformity on X is left adjoint to the forgetful functor which sends a uniform space to its underlying completely regular space.

Explicitly, the fine uniformity on a completely regular space X is generated by all open neighborhoods D of the diagonal in X × X (with the product topology) such that there exists a sequence D1, D2, … of open neighborhoods of the diagonal with D = D1 and .

The uniformity on a completely regular space X induced by C(X) (see the previous section) is not always the fine uniformity.

Read more about this topic:  Uniformizable Space

Famous quotes containing the words uniformity and/or fine:

    The diversity in the faculties of men, from which the rights of property originate, is not less an insuperable obstacle to a uniformity of interests. The protection of these faculties is the first object of government.
    James Madison (1751–1836)

    And every acre good enough to eat,
    As fine as flour put through a baker’s sieve.
    Robert Frost (1874–1963)