Related Corollaries
The following results apply.
- Definition 1 could be rewritten by taking the limits as
- A non-UI sequence. Let, and define
-
- Clearly, and indeed for all n. However,
- and comparing with definition 1, it is seen that the sequence is not uniformly integrable.
- By using Definition 2 in the above example, it can be seen that the first clause is not satisfied as the s are not bounded in . If is a UI random variable, by splitting
-
- and bounding each of the two, it can be seen that a uniformly integrable random variable is always bounded in . It can also be shown that any random variable will satisfy clause 2 in Definition 2.
- If any sequence of random variables is dominated by an integrable, non-negative : that is, for all ω and n,
-
- then the class of random variables is uniformly integrable.
- A class of random variables bounded in is uniformly integrable.
Read more about this topic: Uniform Integrability
Famous quotes containing the word related:
“One does not realize the historical sensation as a re-experiencing, but as an understanding that is closely related to the understanding of music, or rather of the world by means of music.”
—Johan Huizinga (18721945)
Main Site Subjects
Related Phrases
Related Words