Transparency and Translucency

Transparency And Translucency

In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without being scattered. On a macroscopic scale (one where the dimensions investigated are much, much larger than the wavelength of the photons in question), the photons can be said to follow Snell's Law. Translucency (also called translucence or translucidity), is a super-set of transparency, allows light to pass through; but, does not necessarily (again, on the macroscopic scale) follow Snell's law; the photons can be scattered at either of the two interfaces where there is a change in index of refraction, or internally. In other words, a translucent medium allows the transport of light while a transparent medium not only allows the transport of light but allows for the image formation. The opposite property of translucency is opacity. Transparent materials appear clear, with the overall appearance of one color, or any combination leading up to a brilliant spectrum of every color. When light encounters a material, it can interact with it in several different ways. These interactions depend on the wavelength of the light and the nature of the material. Photons interact with an object by some combination of reflection, absorption and transmission. Some materials, such as plate glass and clean water, allow much of the light that falls on them to be transmitted, with little being reflected; such materials are called optically transparent. Many liquids and aqueous solutions are highly transparent. Absence of structural defects (voids, cracks, etc.) and molecular structure of most liquids are mostly responsible for excellent optical transmission.

Materials which do not allow the transmission of light are called opaque. Many such substances have a chemical composition which includes what are referred to as absorption centers. Many substances are selective in their absorption of white light frequencies. They absorb certain portions of the visible spectrum, while reflecting others. The frequencies of the spectrum which are not absorbed are either reflected back or transmitted for our physical observation. This is what gives rise to color. The attenuation of light of all frequencies and wavelengths is due to the combined mechanisms of absorption and scattering.

Read more about Transparency And Translucency:  Introduction, Light Scattering in Solids, Absorption of Light in Solids, Optical Waveguides

Other articles related to "transparency and translucency, transparency":

Transparency And Translucency - Optical Waveguides - Mechanisms of Attenuation
... usually use units of dB/km through the medium due to the very high quality of transparency of modern optical transmission media ... This same phenomenon is seen as one of the limiting factors in the transparency of infrared missile domes ...

Famous quotes containing the word transparency:

    “End of tomorrow.
    Don’t try to start the car or look deeper
    Into the eternal wimpling of the sky: luster
    On luster, transparency floated onto the topmost layer
    Until the whole thing overflows like a silver
    Wedding cake or Christmas tree, in a cascade of tears.”
    John Ashbery (b. 1927)