Specific Impulse - General Considerations

General Considerations

Propellant is normally measured either in units of mass or weight. If mass is used, specific impulse is an impulse per unit mass, which dimensional analysis shows to be a unit of speed, and so specific impulses are often measured in meters per second and are often termed effective exhaust velocity. However, if propellant weight is used instead, an impulse divided by a force (weight) turns out to be a unit of time, and so specific impulses are measured in seconds. These two formulations are both widely used and differ from each other by a factor of g, the dimensioned constant of gravitational acceleration at the surface of the Earth.

Note that the gain of momentum of a rocket (including fuel) per unit time is not equal to the thrust, because the momentum that the fuel has while in the rocket has to be subtracted to the extent that it is used, i.e., the gain of momentum of a rocket per unit time is equal to the thrust, minus the velocity of the rocket multiplied by the amount of fuel used per unit time. (This gain of momentum of the rocket is the negative of the momentum of the exhaust gas.) See also change of impulse of a variable mass.

The higher the specific impulse, the less propellant is needed to produce a given thrust during a given time. In this regard a propellant is more efficient if the specific impulse is higher. This should not be confused with energy efficiency, which can even decrease as specific impulse increases, since propulsion systems that give high specific impulse require high energy to do so.

In addition it is important that thrust and specific impulse not be confused with one another. The specific impulse is a measure of the impulse per unit of propellant that is expended, while thrust is a measure of the momentary or peak force supplied by a particular engine. In many cases, propulsion systems with very high specific impulses—some ion thrusters reach 10,000 seconds—produce low thrusts.

When calculating specific impulse, only propellant that is carried with the vehicle before use is counted. For a chemical rocket the propellant mass therefore would include both fuel and oxidizer; for air-breathing engines only the mass of the fuel is counted, not the mass of air passing through the engine.

Read more about this topic:  Specific Impulse

Other articles related to "general considerations":

Mandibular Fracture - Treatment - General Considerations - Fixation
... Many alternatives exist to secure the maxillary and mandibular dentition including resin bonded arch bars, Ivy loops (small eyelets of wires), orthodontic bands and MMF bone screws where titanium screws with holes in the head of them are screwed into the basal bone of the jaws then secured with wire ... Closed reduction with direct skeletal fixation follows the same premise as MMF except that wires are passed through the skin and around the bottom jaw in the mandibule and through the piriform rim or zygomatic buttresses of the maxilla then joined together to secure the jaws ...
Bulk Vending - From The Vendor's Perspective - Machinery - General Considerations
... Northwestern Corporation (established 1909), Oak Manufacturing (established 1948) and Beaver Machine Corporation (established 1963) are generally regarded in the vending community as companies that sell high-quality bulk candy machines ... The ideal color of the machine may depend on the clientele ...

Famous quotes containing the word general:

    A poet’s object is not to tell what actually happened but what could or would happen either probably or inevitably.... For this reason poetry is something more scientific and serious than history, because poetry tends to give general truths while history gives particular facts.
    Aristotle (384–323 B.C.)