Since computational efficiency is often important, low-order recursive filters are often used for scale-space smoothing. For example, Young and van Vliet use a third-order recursive filter with one real pole and a pair of complex poles, applied forward and backward to make a sixth-order symmetric approximation to the Gaussian with low computational complexity for any smoothing scale.
By relaxing a few of the axioms, Lindeberg concluded that good smoothing filters would be "normalized Pólya frequency sequences", a family of discrete kernels that includes all filters with real poles at and/or, as well as with real zeros at . For symmetry, which leads to approximate directional homogeneity, these filters must be further restricted to pairs of poles and zeros that lead to zero-phase filters.
To match the transfer function curvature at zero frequency of the discrete Gaussian, which ensures an approximate semi-group property of additive t, two poles at can be applied forward and backwards, for symmetry and stability. This filter is the simplest implementation of a normalized Pólya frequency sequence kernel that works for any smoothing scale, but it is not as excellent an approximation to the Gaussian as Young and van Vliet's filter, which is not normalized Pólya frequency sequence, due to its complex poles.
The transfer function of a symmetric pole-pair recursive filter is closely related to the discrete-time Fourier transform of the discrete Gaussian kernel via first-order approximation of the exponential:
-
- where the t parameter here is related to the stable pole position Z = p via
Furthermore, such filters with N pairs of poles, such as the two pole pairs illustrated in this section, are an even better approximation to the exponential:
-
- where the stable pole positions are adjusted by solving
The impulse responses of these filters are not very close to gaussian unless more than two pole pairs are used. However, even with only one or two pole pairs per scale, a signal successively smoothed at increasing scales will be very close to a gaussian-smoothed signal. The semi-group property is poorly approximated when too few pole pairs are used.
Scale-space axioms that are still satisfied by these filters are:
- linearity
- shift invariance (integer shifts)
- non-creation of local extrema (zero-crossings) in one dimension
- non-enhancement of local extrema in any number of dimensions
- positivity
- normalization
The following are only approximately satisfied, the approximation being better for larger numbers of pole pairs:
- existence of an infinitesimal generator (the infinitesimal generator of the discrete Gaussian, or a filter approximating it, approximately maps a recursive filter response to one of infinitesimally larger t )
- the semi-group structure with the associated cascade smoothing property (this property is approximated by considering kernels to be equivalent when they have the same t value, even if they are not quite equal)
- rotational symmetry
- scale invariance
This recursive filter method and variations to compute both the Gaussian smoothing as well as Gaussian derivatives has been described by several authors. Tan et al. have analyzed and compared some of these approaches, and have pointed out that the Young and van Vliet filters are a cascade (multiplication) of forward and backward filters, while the Deriche and the Jin et al. filters are sums of forward and backward filters.
At fine scales, the recursive filtering approach as well as other separable approaches are not guaranteed to give the best possible approximation to rotational symmetry, so non-separable implementations for two-dimensional images may be considered as an alternative.
When computing several derivatives in the N-jet simultaneously, discrete scale-space smoothing with the discrete analogue of the Gaussian kernel, or with a recursive filter approximation, followed by small support difference operators, may be both faster and more accurate than computing recursive approximations of each derivative operator.
Read more about this topic: Scale Space Implementation
Famous quotes containing the word filters:
“Raise a million filters and the rain will not be clean, until the longing for it be refined in deep confession. And still we hear, If only this nation had a soul, or, Let us change the way we trade, or, Let us be proud of our region.”
—Leonard Cohen (b. 1934)