Projective Plane - Finite Projective Planes

Finite Projective Planes

It can be shown that a projective plane has the same number of lines as it has points (infinite or finite). Thus, for every finite projective plane there is an integer N ≥ 2 such that the plane has

N2 + N + 1 points,
N2 + N + 1 lines,
N + 1 points on each line, and
N + 1 lines through each point.

The number N is called the order of the projective plane. (See also the article on finite geometry.)

Using the vector space construction with finite fields there exists a projective plane of order N = pn, for each prime power pn. In fact, for all known finite projective planes, the order N is a prime power.

The existence of finite projective planes of other orders is an open question. The only general restriction known on the order is the Bruck-Ryser-Chowla theorem that if the order N is congruent to 1 or 2 mod 4, it must be the sum of two squares. This rules out N = 6. The next case N = 10 has been ruled out by massive computer calculations. Nothing more is known; in particular, the question of whether there exists a finite projective plane of order N = 12 is still open.

Another longstanding open problem is whether there exist finite projective planes of prime order which are not finite field planes (equivalently, whether there exists a non-Desarguesian projective plane of prime order).

A projective plane of order N is a Steiner S(2, N + 1, N2 + N + 1) system (see Steiner system). Conversely, one can prove that all Steiner systems of this form (λ = 2) are projective planes.

The number of mutually orthogonal Latin squares of order N is at most N − 1. N − 1 exist if and only if there is a projective plane of order N.

While the classification of all projective planes is far from complete, results are known for small orders:

  • 2 : all isomorphic with PG(2,2)
  • 3 : all isomorphic with PG(2,3)
  • 4 : all isomorphic with PG(2,4)
  • 5 : all isomorphic with PG(2,5)
  • 6 : impossible as the order of a projective plane, proved by Tarry who showed that Euler's thirty-six officers problem has no solution
  • 7 : all isomorphic with PG(2,7)
  • 8 : all isomorphic with PG(2,8)
  • 9 : PG(2,9), and three more different (non-isomorphic) non-Desarguesian planes. (All described in (Room & Kirkpatrick 1971)).
  • 10 : impossible as an order of a projective plane, proved by heavy computer calculation.
  • 11 : at least PG(2,11), others are not known but possible.
  • 12 : it is conjectured to be impossible as an order of a projective plane.

Read more about this topic:  Projective Plane

Other articles related to "projective, finite projective planes, finite projective plane":

Abstract Algebraic Variety - Introduction and Definitions
... Next, one can define projective and quasi-projective varieties in a similar way ... The most general definition of a variety is obtained by patching together smaller quasi-projective varieties ...
Schanuel's Lemma - Origins
... Kaplansky writes Early in the course I formed a one-step projective resolution of a module, and remarked that if the kernel was projective in one resolution it was projective in all ...
Steiner System - Examples - Finite Projective Planes
... A finite projective plane of order q, with the lines as blocks, is an S(2, q+1, q2+q+1), since it has q2+q+1 points, each line passes through q+1 points, and each pair of ...
Projective Cover
... abstract mathematics called category theory, a projective cover of an object X is in a sense the best approximation of X by a projective object P ... Projective covers are the dual of injective envelopes ...

Famous quotes containing the words planes and/or finite:

    After the planes unloaded, we fell down
    Buried together, unmarried men and women;
    Robert Lowell (1917–1977)

    For it is only the finite that has wrought and suffered; the infinite lies stretched in smiling repose.
    Ralph Waldo Emerson (1803–1882)