Planetary Habitability

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and sustain life. Life may develop directly on a planet or satellite or be transferred to it from another body, a theoretical process known as panspermia. As the existence of life beyond Earth is currently uncertain, planetary habitability is largely an extrapolation of conditions on Earth and the characteristics of the Sun and Solar System which appear favourable to life's flourishing—in particular those factors that have sustained complex, multicellular organisms and not just simpler, unicellular creatures. Research and theory in this regard is a component of planetary science and the emerging discipline of astrobiology.

An absolute requirement for life is an energy source, and the notion of planetary habitability implies that many other geophysical, geochemical, and astrophysical criteria must be met before an astronomical body can support life. In its astrobiology roadmap, NASA has defined the principal habitability criteria as "extended regions of liquid water, conditions favourable for the assembly of complex organic molecules, and energy sources to sustain metabolism."

In determining the habitability potential of a body, studies focus on its bulk composition, orbital properties, atmosphere, and potential chemical interactions. Stellar characteristics of importance include mass and luminosity, stable variability, and high metallicity. Rocky, terrestrial-type planets and moons with the potential for Earth-like chemistry are a primary focus of astrobiological research, although more speculative habitability theories occasionally examine alternative biochemistries and other types of astronomical bodies.

The idea that planets beyond Earth might host life is an ancient one, though historically it was framed by philosophy as much as physical science. The late 20th century saw two breakthroughs in the field. The observation and robotic spacecraft exploration of other planets and moons within the Solar System has provided critical information on defining habitability criteria and allowed for substantial geophysical comparisons between the Earth and other bodies. The discovery of extrasolar planets, beginning in the early 1990s and accelerating thereafter, has provided further information for the study of possible extraterrestrial life. These findings confirm that the Sun is not unique among stars in hosting planets and expands the habitability research horizon beyond the Solar System. In 1964 Stephen H. Dole estimated the number of habitable planets in our galaxy to be about 600 million.

Read more about Planetary HabitabilitySuitable Star Systems, Planetary Characteristics, Uninhabited Habitats, Alternative Star Systems, The Galactic Neighborhood

Other articles related to "planetary habitability, habitability, planetary":

Astrobiologist - Methodology - Planetary Habitability
... This comes from the idea of planetary habitability ... (See Habitability of red dwarf systems) ...
Planetary Habitability - Other Considerations - Life's Impact On Habitability
... factors that support life's emergence is the notion that life itself, once formed, becomes a habitability factor in its own right ... that life as a whole fosters and maintains suitable conditions for itself by helping to create a planetary environment suitable for its continuity ... in which our understanding of what constitutes habitability cannot be separated from life already extant on a planet ...

Famous quotes containing the word planetary:

    What is a television apparatus to man, who has only to shut his eyes to see the most inaccessible regions of the seen and the never seen, who has only to imagine in order to pierce through walls and cause all the planetary Baghdads of his dreams to rise from the dust.
    Salvador Dali (1904–1989)