Lithium Compounds - Properties - Chemistry and Compounds

Chemistry and Compounds

Lithium reacts with water easily, but with noticeably less energy than other alkali metals do. The reaction forms hydrogen gas and lithium hydroxide in aqueous solution. Because of its reactivity with water, lithium is usually stored under cover of a viscous hydrocarbon, often petroleum jelly. Though the heavier alkali metals can be stored in less dense substances, such as mineral oil, lithium is not dense enough to be fully submerged in these liquids. In moist air, lithium rapidly tarnishes to form a black coating of lithium hydroxide (LiOH and LiOH·H2O), lithium nitride (Li3N) and lithium carbonate (Li2CO3, the result of a secondary reaction between LiOH and CO2).

When placed over a flame, lithium compounds give off a striking crimson color, but when it burns strongly the flame becomes a brilliant silver. Lithium will ignite and burn in oxygen when exposed to water or water vapors. Lithium is flammable, and it is potentially explosive when exposed to air and especially to water, though less so than the other alkali metals. The lithium-water reaction at normal temperatures is brisk but not violent, the hydrogen produced will not ignite on its own. As with all alkali metals, lithium fires are difficult to extinguish, requiring dry powder fire extinguishers, specifically Class D type (see Types of extinguishing agents). Lithium is the only metal which reacts with nitrogen under normal conditions.

Lithium has a diagonal relationship with magnesium, an element of similar atomic and ionic radius. Chemical resemblances between the two metals include the formation of a nitride by reaction with N2, the formation of an oxide (Li2O) and peroxide (Li2O2) when burnt in O2, salts with similar solubilities, and thermal instability of the carbonates and nitrides. The metal reacts with hydrogen gas at high temperatures to produce lithium hydride (LiH).

Other known binary compounds include the halides (LiF, LiCl, LiBr, LiI), and the sulfide (Li2S), the superoxide (LiO2), carbide (Li2C2). Many other inorganic compounds are known, where lithium combines with anions to form various salts: borates, amides, carbonate, nitrate, or borohydride (LiBH4). Multiple organolithium reagents are known where there is a direct bond between carbon and lithium atoms effectively creating a carbanion. These are extremely powerful bases and nucleophiles. In many of these organolithium compounds, the lithium ions tend to aggregate into high-symmetry clusters by themselves, which is relatively common for alkali cations.

Read more about this topic:  Lithium Compounds, Properties

Other articles related to "chemistry and compounds, compounds, chemistry, compound":

Chlor - Characteristics - Chemical Characteristics - Chemistry and Compounds
... See also category Chlorine compounds Chlorine exists in all odd numbered oxidation states from −1 to +7, as well as the elemental state of zero and four in chlorine dioxide (see table below, and ... Oxidation state Name Formula Characteristic compounds −1 chlorides Cl− ionic chlorides, organic chlorides, hydrochloric acid 0 chlorine Cl2 elemental chlorine +1 hypochlorites ClO− sodium hypochlorite ...
Iron Compounds - Chemistry and Compounds - Coordination and Organometallic Compounds
... See also organoiron chemistry Several cyanide complexes are known ... Several carbonyl compounds of iron are known ... The premier iron(0) compound is iron pentacarbonyl, Fe(CO)5, which is used to produce carbonyl iron powder, a highly reactive form of metallic iron ...

Famous quotes containing the words compounds and/or chemistry:

    We can come up with a working definition of life, which is what we did for the Viking mission to Mars. We said we could think in terms of a large molecule made up of carbon compounds that can replicate, or make copies of itself, and metabolize food and energy. So that’s the thought: macrocolecule, metabolism, replication.
    Cyril Ponnamperuma (b. 1923)

    Science with its retorts would have put me to sleep; it was the opportunity to be ignorant that I improved. It suggested to me that there was something to be seen if one had eyes. It made a believer of me more than before. I believed that the woods were not tenantless, but choke-full of honest spirits as good as myself any day,—not an empty chamber, in which chemistry was left to work alone, but an inhabited house,—and for a few moments I enjoyed fellowship with them.
    Henry David Thoreau (1817–1862)