Grothendieck Universe - Grothendieck Universes and Inaccessible Cardinals

Grothendieck Universes and Inaccessible Cardinals

There are two simple examples of Grothendieck universes:

Other examples are more difficult to construct. Loosely speaking, this is because Grothendieck universes are equivalent to strongly inaccessible cardinals. More formally, the following two axioms are equivalent:

(U) For each set x, there exists a Grothendieck universe U such that xU.
(C) For each cardinal κ, there is a strongly inaccessible cardinal λ which is strictly larger than κ.

To prove this fact, we introduce the function c(U). Define:

where by |x| we mean the cardinality of x. Then for any universe U, c(U) is strongly inaccessible: It is a strong limit cardinal because the power set of any element of U is an element of U and every element of U is a subset of U. To see that it is regular, suppose that cλ is a collection of cardinals indexed by I, where the cardinality of I and of each cλ is less than c(U). Then, by the definition of c(U), I and each cλ can be replaced by an element of U. The union of elements of U indexed by an element of U is an element of U, so the sum of the cλ has the cardinality of an element of U, hence is less than c(U). By invoking the axiom of foundation, that no set is contained in itself, it can be shown that c(U) equals |U|; when the axiom of foundation is not assumed, there are counterexamples (we may take for example U to be the set of all finite sets of finite sets etc. of the sets xα where the index α is any real number, and xα = {xα} for each α. Then U has the cardinality of the continuum, but all of its members have finite cardinality and so ; see Bourbaki's article for more details).

Let κ be a strongly inaccessible cardinal. Say that a set S is strictly of type κ if for any sequence sn ∈ ... ∈ s0S, |sn| < κ. (S itself corresponds to the empty sequence.) Then the set u(κ) of all sets strictly of type κ is a Grothendieck universe of cardinality κ. The proof of this fact is long, so for details, we again refer to Bourbaki's article, listed in the references.

To show that the large cardinal axiom (C) implies the universe axiom (U), choose a set x. Let x0 = x, and for each n, let xn+1 = xn be the union of the elements of xn. Let y = xn. By (C), there is a strongly inaccessible cardinal κ such that |y| < κ. Let u(κ) be the universe of the previous paragraph. x is strictly of type κ, so xu(κ). To show that the universe axiom (U) implies the large cardinal axiom (C), choose a cardinal κ. κ is a set, so it is an element of a Grothendieck universe U. The cardinality of U is strongly inaccessible and strictly larger than that of κ.

In fact, any Grothendieck universe is of the form u(κ) for some κ. This gives another form of the equivalence between Grothendieck universes and strongly inaccessible cardinals:

For any Grothendieck universe U, |U| is either zero, or a strongly inaccessible cardinal. And if κ is zero, or a strongly inaccessible cardinal, then there is a Grothendieck universe u(κ). Furthermore, u(|U|)=U, and |u(κ)| = κ.

Since the existence of strongly inaccessible cardinals cannot be proved from the axioms of Zermelo-Fraenkel set theory (ZFC), the existence of universes other than the empty set and cannot be proved from ZFC either. However, strongly inaccessible cardinals are on the lower end of the list of large cardinals; thus, most set theories that use large cardinals (such as "ZFC plus there is a measurable cardinal", "ZFC plus there are infinitely many Woodin cardinals") will prove that Grothendieck universes exist.

Read more about this topic:  Grothendieck Universe

Famous quotes containing the word inaccessible:

    The knowledge of an unlearned man is living and luxuriant like a forest, but covered with mosses and lichens and for the most part inaccessible and going to waste; the knowledge of the man of science is like timber collected in yards for public works, which still supports a green sprout here and there, but even this is liable to dry rot.
    Henry David Thoreau (1817–1862)