Emc2 - Meanings of The Strict Mass–energy Equivalence Formula, E = Mc² - Relation To Gravity

Relation To Gravity

In physics, there are two distinct concepts of mass: the gravitational mass and the inertial mass. The gravitational mass is the quantity that determines the strength of the gravitational field generated by an object, as well as the gravitational force acting on the object when it is immersed in a gravitational field produced by other bodies. The inertial mass, on the other hand, quantifies how much an object accelerates if a given force is applied to it. The mass-energy equivalence in special relativity refers to the inertial mass. However, already in the context of Newton gravity, the Weak Equivalence Principle is postulated: the gravitational and the inertial mass of every object are the same. Thus, the mass-energy equivalence, combined with the Weak Equivalence Principle, results in the prediction that all forms of energy contribute to the gravitational field generated by an object. This observation is one of the pillars of the general theory of relativity.

The above prediction, that all forms of energy interact gravitationally, has been subject to experimental tests. The first observation testing this prediction was made in 1919. During a solar eclipse, Arthur Eddington observed that the light from stars passing close to the Sun was bent. The effect is due to the gravitational attraction of light by the sun. The observation confirmed that the energy carried by light indeed is equivalent to a gravitational mass. Another seminal experiment, the Pound–Rebka experiment, was performed in 1960. In this test a beam of light was emitted from the top of a tower and detected at the bottom. The frequency of the light detected was higher than the light emitted. This result confirms that the energy of photons increases when they fall in the gravitational field of the earth. The energy, and therefore the gravitational mass, of photons is proportional to their frequency as stated by the Planck's relation.

Read more about this topic:  Emc2, Meanings of The Strict Mass–energy Equivalence Formula, E = Mc²

Famous quotes containing the words relation to, gravity and/or relation:

    Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.
    Honoré De Balzac (1799–1850)

    Here I sit down to form characters. One I intend to be all goodness; All goodness he is. Another I intend to be all gravity; All gravity he is. Another Lady Gish; All Lady Gish she is. I am all the while absorbed in the character. It is not fair to say—I, identically I, am anywhere, while I keep within the character.
    Samuel Richardson (1689–1761)

    Only in a house where one has learnt to be lonely does one have this solicitude for things. One’s relation to them, the daily seeing or touching, begins to become love, and to lay one open to pain.
    Elizabeth Bowen (1899–1973)