Spherical Polyhedron - Relation To Tilings of The Projective Plane

Relation To Tilings of The Projective Plane

Spherical polyhedra having at least one inversive symmetry are related to projective polyhedra (tessellations of the real projective plane) – just as the sphere has a 2-to-1 covering map of the projective plane, projective polyhedra correspond under 2-fold cover to spherical polyhedra that are symmetric under reflection through the origin. For example, the 2-fold cover of the (projective) hemi-cube is the (spherical) cube.

Read more about this topic:  Spherical Polyhedron

Famous quotes containing the words relation to, plane and/or relation:

    There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artist’s relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artist’s concern with merely temporary and local disturbances. The song is higher than the struggle.
    Adrienne Rich (b. 1929)

    Even though I had let them choose their own socks since babyhood, I was only beginning to learn to trust their adult judgment.. . . I had a sensation very much like the moment in an airplane when you realize that even if you stop holding the plane up by gripping the arms of your seat until your knuckles show white, the plane will stay up by itself. . . . To detach myself from my children . . . I had to achieve a condition which might be called loving objectivity.
    —Anonymous Parent of Adult Children. Ourselves and Our Children, by Boston Women’s Health Book Collective, ch. 5 (1978)

    There is a relation between the hours of our life and the centuries of time. As the air I breathe is drawn from the great repositories of nature, as the light on my book is yielded by a star a hundred millions of miles distant, as the poise of my body depends on the equilibrium of centrifugal and centripetal forces, so the hours should be instructed by the ages and the ages explained by the hours.
    Ralph Waldo Emerson (1803–1882)