**Geometric Relations**

There are three pairs of parallel planes that each intersect the rhombicuboctahedron in a regular octagon. The rhombicuboctahedron may be divided along any of these to obtain an octagonal prism with regular faces and two additional polyhedra called square cupolae, which count among the Johnson solids; it is thus an *elongated square orthobicupola*. These pieces can be reassembled to give a new solid called the elongated square gyrobicupola or *pseudorhombicuboctahedron*, with the symmetry of a square antiprism. In this the vertices are all locally the same as those of a rhombicuboctahedron, with one triangle and three squares meeting at each, but are not all identical with respect to the entire polyhedron, since some are closer to the symmetry axis than others.

Rhombicuboctahedron |

Pseudorhombicuboctahedron |

There are distortions of the rhombicuboctahedron that, while some of the faces are not regular polygons, are still vertex-uniform. Some of these can be made by taking a cube or octahedron and cutting off the edges, then trimming the corners, so the resulting polyhedron has six square and twelve rectangular faces. These have octahedral symmetry and form a continuous series between the cube and the octahedron, analogous to the distortions of the rhombicosidodecahedron or the tetrahedral distortions of the cuboctahedron. However, the rhombicuboctahedron also has a second set of distortions with six rectangular and sixteen trapezoidal faces, which do not have octahedral symmetry but rather T_{h} symmetry, so they are invariant under the same rotations as the tetrahedron but different reflections.

The lines along which a Rubik's Cube can be turned are, projected onto a sphere, similar, topologically identical, to a rhombicuboctahedron's edges. In fact, variants using the Rubik's Cube mechanism have been produced which closely resemble the rhombicuboctahedron.

The rhombicuboctahedron is used in three uniform space-filling tessellations: the cantellated cubic honeycomb, the runcitruncated cubic honeycomb, and the runcinated alternated cubic honeycomb.

Read more about this topic: Rhombicuboctahedron

### Other articles related to "geometric relations":

**Geometric Relations**

... The cube is the cell of the only regular tiling of three-dimensional Euclidean space ... It is also unique among the Platonic solids in having faces with an even number of sides and, consequently, it is the only member of that group that is a zonohedron (every face has point symmetry) ...

### Famous quotes containing the words relations and/or geometric:

“What a man sows, that shall he and his *relations* reap.”

—Clarissa Graves (1892–1985?)

“In mathematics he was greater

Than Tycho Brahe, or Erra Pater:

For he, by *geometric* scale,

Could take the size of pots of ale;

Resolve, by sines and tangents straight,

If bread and butter wanted weight;

And wisely tell what hour o’ th’ day

The clock doth strike, by algebra.”

—Samuel Butler (1612–1680)