Reinforced Concrete - Non-steel Reinforcement

Non-steel Reinforcement

There is considerable overlap between the subjects of non-steel reinforcement and fiber-reinforcment of concrete. The introduction of non-steel reinforcement of concrete is relatively recent; it takes two major forms: non-metallic rebar rods, and non-steel (usually also non-metallic) fibres incorporated into the cement matrix. For example there is increasing interest in glass fiber reinforced concrete (GFRC) and in various applications of polymer fibres incorporated into concrete. Although currently there is not much suggestion that such materials will in general replace metal rebar, some of them have major advantages in specific applications, and there also are new applications in which metal rebar simply is not an option. However, the design and application of non-steel reinforcing is fraught with challenges; for one thing, concrete is a highly alkaline environment, in which many materials, including most kinds of glass, have a poor service life. Also, the behaviour of such reinforcing materials differ from the behaviour of metals, for instance in terms of shear strength, creep and elasticity.

Fibre-Reinforced Polymer (FRP) (Fibre-reinforced plastic or FRP) and Glass-reinforced plastic (GRP) consist of fibres of polymer, glass, carbon, aramid or other polymers or high-strength fibres set in a resin matrix to form a rebar rod or grid or fibres. These rebars are installed in much the same manner as steel. The cost is higher but, suitably applied, the structures have advantages, in particular a dramatic reduction in problems related to corrosion, either by intrinsic concrete alkalinity or by external corrosive fluids that might penetrate the concrete. These structures can be significantly lighter and usually have a longer service life. The cost of these materials has dropped dramatically since their widespread adoption in the aerospace industry and by the military.

In particular FRP rods are useful for structures where the presence of steel would not be acceptable. For example, MRI machines have huge magnets, and accordingly require non-magnetic buildings. Again, toll booths that read radio tags need reinforced concrete that is transparent to radio waves. Also, where the design life of the concrete structure is more important than its initial costs, non-steel reinforcing often has its advantages where corrosion of reinforcing steel is a major cause of failure. In such situations corrosion-proof reinforcing can extend a structure's life substantially, for example in the intertidal zone. FRP rods may also be useful in situations where it is likely that the concrete structure may be compromised in future years, for example the edges of balconies when balustrades are replaced and bathroom floors in multi-story construction where the service life of the floor structure is likely to be many times the service life of the waterproofing building membrane.

Plastic reinforcement often is stronger, or at least has a better strength to weight ratio than reinforcing steels. Also, because it resists corrosion, it does not need a protective concrete cover as thick as steel reinforcement does (typically 30 to 50 mm or more). FRP-reinforced structures therefore can be lighter and last longer. Accordingly, for some applications the whole-life cost will be price-competitive with steel-reinforced concrete.

The material properties of FRP or GRP bars differ markedly from steel, so there are differences in the design considerations. FRP or GRP bars have relatively higher tensile strength but lower stiffness, so that Deflections are likely to be higher than for equivalent steel-reinforced units. Structures with internal FRP reinforcement typically have an elastic deformability comparable to the plastic deformability (ductility) of steel reinforced structures. Failure in either case is more likely to occur by compression of the concrete than by rupture of the reinforcement. Deflection is always a major design consideration for reinforced concrete. Deflection limits are set to ensure that crack widths in steel-reinforced concrete are controlled to prevent water, air or other aggressive substances reaching the steel and causing corrosion. For FRP-reinforced concrete, aesthetics and possibly water-tightness will be the limiting criteria for crack width control. FRP rods also have relatively lower compressive strengths than steel rebar, and accordingly require different design approaches for reinforced concrete columns.

One drawback to the use of FRP reinforcement is the limited fire resistance. Where fire safety is a consideration, structures employing FRP have to maintain their strength and the anchoring of the forces at temperatures to be expected in the event of fire. For purposes of fireproofing an adequate thickness of cement concrete cover or protective cladding is necessary. The disadvantages are not on the side of the FRP however, addition of 1 kg/m3 of polypropylene fibers to concrete has been shown to reduce spalling during a simulated fire. (The improvement is thought to be due to the formation of pathways out of the bulk of the concrete, allowing steam pressure to dissipate.)

Another problem is the effectiveness of shear reinforcement. FRP rebar stirrups formed by bending before hardening generally perform relatively poorly in comparison to steel stirrups or to structures with straight fibres. When strained, the zone between the straight and curved regions are subject to strong bending, shear, and longitudinal stresses. Special design techniques are necessary to deal with such problems.

There is growing interest in application of external reinforcement of existing structures with advanced materials such as carbon fibre, that can impart exceptional strength.

Read more about this topic:  Reinforced Concrete