Protein Domains - Domains As Evolutionary Modules

Domains As Evolutionary Modules

Nature is a tinkerer and not an inventor, new sequences are adapted from pre-existing sequences rather than invented. Domains are the common material used by nature to generate new sequences, they can be thought of as genetically mobile units, referred to as 'modules'. Often, the C and N termini of domains are close together in space, allowing them to easily be "slotted into" parent structures during the process of evolution. Many domain families are found in all three forms of life, Archaea, Bacteria and Eukarya. Domains that are repeatedly found in diverse proteins are often referred to as modules, examples can be found among extracellular proteins associated with clotting, fibrinolysis, complement, the extracellular matrix, cell surface adhesion molecules and cytokine receptors.

Molecular evolution gives rise to families of related proteins with similar sequence and structure. However, sequence similarities can be extremely low between proteins that share the same structure. Protein structures may be similar because proteins have diverged from a common ancestor. Alternatively, some folds may be more favored than others as they represent stable arrangements of secondary structures and some proteins may converge towards these folds over the course of evolution . There are currently about 45,000 experimentally determined protein 3D structures deposited within the Protein Data Bank (PDB). However this set contains a lot of identical or very similar structures. All proteins should be classified to structural families to understand their evolutionary relationships. Structural comparisons are best achieved at the domain level. For this reason many algorithms have been developed to automatically assign domains in proteins with known 3D structure, see 'Domain definition from structural co-ordinates'.

The CATH domain database classifies domains into approximately 800 fold families, ten of these folds are highly populated and are referred to as 'super-folds'. Super-folds are defined as folds for which there are at least three structures without significant sequence similarity. The most populated is the α/β-barrel super-fold as described previously.

Read more about this topic:  Protein Domains

Other articles related to "domains as evolutionary modules, domains, modules, domain":

Protein Domain - Domains As Evolutionary Modules
... Domains are the common material used by nature to generate new sequences, they can be thought of as genetically mobile units, referred to as 'modules' ... Often, the C and N termini of domains are close together in space, allowing them to easily be "slotted into" parent structures during the process of evolution ... Many domain families are found in all three forms of life, Archaea, Bacteria and Eukarya ...

Famous quotes containing the words domains and/or evolutionary:

    I shall be a benefactor if I conquer some realms from the night, if I report to the gazettes anything transpiring about us at that season worthy of their attention,—if I can show men that there is some beauty awake while they are asleep,—if I add to the domains of poetry.
    Henry David Thoreau (1817–1862)

    The point is, ladies and gentlemen, that greed, for lack of a better word, is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.
    Stanley Weiser, U.S. screenwriter, and Oliver Stone. Gordon Gekko (Michael Douglas)