Organic Field-effect Transistor - Materials


One common feature of OFET materials is the inclusion of an aromatic or otherwise conjugated π-electron system, facilitating the delocalization of orbital wavefunctions. Electron withdrawing groups or donating groups can be attached that facilitate hole or electron transport.

OFETs employing many aromatic and conjugated materials as the active semiconducting layer have been reported, including small molecules such as rubrene, tetracene, pentacene, diindenoperylene, perylenediimides, tetracyanoquinodimethane (TCNQ), and polymers such as polythiophenes (especially poly 3-hexylthiophene (P3HT)), polyfluorene, polydiacetylene, poly 2,5-thienylene vinylene, poly p-phenylene vinylene (PPV).

The field is very active, with newly synthesized and tested compounds reported weekly in prominent research journals. Many review articles exist documenting the development of these materials.

Rubrene-based OFETs show the highest carrier mobility 20–40 cm2/(V·s). Another popular OFET material is pentacene, which has been used since 1980s, but resulted in about 10 times lower mobilities than rubrene. The major problem with pentacene, as well as many other organic conductors, is its rapid oxidation in air to form pentacene-quinone. However if the pentacene is preoxidized, and the thus formed pentacene-quinone is used as the gate insulator, then the mobility can approach the rubrene values. This pentacene oxidation technique is akin to the silicon oxidation used in the silicon electronics.

Polycrystalline tetrathiafulvalene and its analogues result in mobilities in the range 0.1–1.4 cm2/(V·s). However, the mobility exceeds 10 cm2/(V·s) in solution-grown or vapor-transport-grown single crystalline hexamethylene-tetrathiafulvalene (HMTTF). The ON/OFF voltage is different for devices grown by those two techniques, presumably due to the higher processing temperatures using in the vapor transport grows.

All the above-mentioned devices are based on p-type conductivity. N-type OFETs are yet poorly developed. They are usually based on perylenediimides or fullerenes or their derivatives, and show electron mobilities below 2 cm2/(V·s).

Read more about this topic:  Organic Field-effect Transistor

Other articles related to "materials, material":

Organic Field-effect Transistor - History of OFETs
... However, rising costs of materials and manufacturing, as well as public interest in more environmentally friendly electronics materials have supported ... which allows the devices to use less conductive materials in their design ...
Wide Bandgap Semiconductors - Material Properties - Bandgap
... The magnitude of the coulombic potential determines the bandgap of a material, and the size of atoms and electronegativities are two factors that ... Materials with small atoms and strong, electronegative atomic bonds are associated with wide bandgaps ... Elements high on the periodic table are more likely to be wide bandgap materials ...
Obscene Publications Act 1959 - Impact and Assessment
... sting" operations where the police purchased "obscene" materials were not considered sufficient evidence of publication, since the police were not ... Secondly, the offer of such materials for sale was not held to be publication, since it was merely an invitation to treat ... publication or sale" and also extended "obscene materials" to cover photograph negatives ...
Drill Bit - Characteristics - Materials
... Many different materials are used for or on drill bits, depending on the required application ... Many hard materials, such as carbides, are much more brittle than steel, and are far more subject to breaking, particularly if the drill is not held at a very constant ... steel bits due to the properties conferred by hardening and tempering the material ...

Famous quotes containing the word materials:

    The competent leader of men cares little for the niceties of other peoples’ characters: he cares much—everything—for the exterior uses to which they may be put.... These are men to be moved. How should he move them? He supplies the power; others simply the materials on which that power operates.
    Woodrow Wilson (1856–1924)

    He was no specialist except in the relation of things.... He took most of his materials at second hand.... But no matter who mined the gold, the image and superscription are his.
    Woodrow Wilson (1856–1924)

    In how few words, for instance, the Greeks would have told the story of Abelard and Heloise, making but a sentence of our classical dictionary.... We moderns, on the other hand, collect only the raw materials of biography and history, “memoirs to serve for a history,” which is but materials to serve for a mythology.
    Henry David Thoreau (1817–1862)