Neuroplasticity - History - Research and Discovery

Research and Discovery

In 1923, Karl Lashley conducted experiments on rhesus monkeys which demonstrated changes in neuronal pathways, which he concluded to be evidence of plasticity, although despite this, as well as further examples of research suggesting this, the idea of neuroplasticity was not widely accepted by neuroscientists. However, more significant evidence began to be produced in the 1960s and after, notably from scientists including Paul Bach-y-Rita, Michael Merzenich along with Jon Kaas, as well as several others.

In the 1960s, Paul Bach-y-Rita invented a device that allowed blind people to read, perceive shadows, and distinguish between close and distant objects. This "machine was one of the first and boldest applications of neuroplasticity." The patient sat in an electrically stimulated chair that had a large camera behind it which scanned the area, sending electrical signals of the image to four hundred vibrating stimulators on the chair against the patient’s skin. The six subjects of the experiment were eventually able to recognize a picture of the supermodel Twiggy.

It must be emphasized that these people were congenitally blind and had previously not been able to see. Bach-y-Rita believed in sensory substitution; if one sense is damaged, your other senses can sometimes take over. He thought skin and its touch receptors could act as a retina (using one sense for another). In order for the brain to interpret tactile information and convert it into visual information, it has to learn something new and adapt to the new signals. The brain's capacity to adapt implied that it possessed plasticity. He thought, "We see with our brains, not with our eyes."

A tragic stroke that left his father paralyzed inspired Bach-y-Rita to study brain rehabilitation. His brother, a physician, worked tirelessly to develop therapeutic measures which were so successful that the father recovered complete functionality by age 68 and was able to live a normal, active life which even included mountain climbing. "His father’s story was firsthand evidence that a ‘late recovery’ could occur even with a massive lesion in an elderly person." He found more evidence of this possible brain reorganization with Shepherd Ivory Franz's work. One study involved stroke patients who were able to recover through the use of brain stimulating exercises after having been paralyzed for years. "Franz understood the importance of interesting, motivating rehabilitation: ‘Under conditions of interest, such as that of competition, the resulting movement may be much more efficiently carried out than in the dull, routine training in the laboratory’(Franz, 1921, pg.93)." This notion has led to motivational rehabilitation programs that are used today.

Michael Merzenich is a neuroscientist who has been one of the pioneers of brain plasticity for over three decades. He has made some of "the most ambitious claims for the field - that brain exercises may be as useful as drugs to treat diseases as severe as schizophrenia - that plasticity exists from cradle to the grave, and that radical improvements in cognitive functioning - how we learn, think, perceive, and remember are possible even in the elderly." Merzenich’s work was affected by a crucial discovery made by David Hubel and Torsten Wiesel in their work with kittens. The experiment involved sewing one eye shut and recording the cortical brain maps. Hubel and Wiesel saw that the portion of the kitten’s brain associated with the shut eye was not idle, as expected. Instead, it processed visual information from the open eye. It was"… as though the brain didn’t want to waste any ‘cortical real estate’ and had found a way to rewire itself."

This implied brain plasticity during the critical period. However, Merzenich argued that brain plasticity could occur beyond the critical period. His first encounter with adult plasticity came when he was engaged in a postdoctoral study with Clinton Woosley. The experiment was based on observation of what occurred in the brain when one peripheral nerve was cut and subsequently regenerated. The two scientists micromapped the hand maps of monkey brains before and after cutting a peripheral nerve and sewing the ends together. Afterwards, the hand map in the brain that was expected to be jumbled was nearly normal. This was a substantial breakthrough. Merzenich asserted that "if the brain map could normalize its structure in response to abnormal input, the prevailing view that we are born with a hardwired system had to be wrong. The brain had to be plastic."

Read more about this topic:  Neuroplasticity, History

Other articles related to "research and discovery, research, research and":

Arul Chinnaiyan - Research and Discovery
... The focus of his research is molecular profiling of cancer in order to discover novel diagnostic markers and therapeutic targets ... In research which challenges the current dogma, Arul has discovered chromosome translocation in solid prostate tumours ...
The Human Embryo - Research
... Their use in stem cell research, reproductive cloning, and germline engineering are currently being explored ... The morality of this type of research is debated because an embryo is often used ...
Artistic Research
... becoming more academics-oriented is leading to artistic research being accepted as the primary mode of enquiry in art as in the case of other disciplines ... One of the characteristics of artistic research is that it must accept subjectivity as opposed to the classical scientific methods ... is similar to the social sciences in using qualitative research and intersubjectivity as tools to apply measurement and critical analysis ...

Famous quotes containing the words discovery and/or research:

    I have known no experience more distressing than the discovery that Negroes didn’t love me. Unutterable loneliness claimed me. I felt without roots, like a man without a country ...
    Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 1, ch. 10 (1962)

    Our science has become terrible, our research dangerous, our findings deadly. We physicists have to make peace with reality. Reality is not as strong as we are. We will ruin reality.
    Friedrich Dürrenmatt (1921–1990)