In fluid dynamics, the **mild-slope equation** describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

The mild-slope equation models the propagation and transformation of water waves, as they travel through waters of varying depth and interact with lateral boundaries such as cliffs, beaches, seawalls and breakwaters. As a result, it describes the variations in wave amplitude, or equivalently wave height. From the wave amplitude, the amplitude of the flow velocity oscillations underneath the water surface can also be computed. These quantities—wave amplitude and flow-velocity amplitude—may subsequently be used to determine the wave effects on coastal and offshore structures, ships and other floating objects, sediment transport and resulting geomorphology changes of the sea bed and coastline, mean flow fields and mass transfer of dissolved and floating materials. Most often, the mild-slope equation is solved by computer using methods from numerical analysis.

A first form of the mild-slope equation was developed by Eckart in 1952, and an improved version—the mild-slope equation in its classical formulation—has been derived independently by Juri Berkhoff in 1972. Thereafter, many modified and extended forms have been proposed, to include the effects of, for instance: wave–current interaction, wave nonlinearity, steeper sea-bed slopes, bed friction and wave breaking. Also parabolic approximations to the mild-slope equation are often used, in order to reduce the computational cost.

In case of a constant depth, the mild-slope equation reduces to the Helmholtz equation for wave diffraction.

Read more about Mild-slope Equation: Formulation For Monochromatic Wave Motion, Transformation To An Inhomogeneous Helmholtz Equation, Propagating Waves, Derivation of The Mild-slope Equation, Applicability and Validity of The Mild-slope Equation

### Other articles related to "equation":

**Mild-slope Equation**

... The standard mild slope

**equation**, without extra terms for bed slope and bed curvature, provides accurate results for the wave field over bed slopes ranging from 0 to about 1/3 ...

### Famous quotes containing the word equation:

“A nation fights well in proportion to the amount of men and materials it has. And the other *equation* is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”

—Norman Mailer (b. 1923)