Manhattan Project - Uranium - Isotope Separation - Electromagnetic Separation

Electromagnetic Separation

Electromagnetic isotope separation was developed by Lawrence at the University of California Radiation Laboratory. This method employed devices known as calutrons, a hybrid of the standard laboratory mass spectrometer and cyclotron. The name was derived from the words "California", "university" and "cyclotron". In the electromagnetic process, a magnetic field deflected charged particles according to mass. The process was neither scientifically elegant nor industrially efficient. Compared with a gaseous diffusion plant or a nuclear reactor, an electromagnetic separation plant would consume more scarce materials, require more manpower to operate, and cost more to build. Nonetheless, the process was approved because it was based on proven technology and therefore represented less risk. Moreover, it could be built in stages, and rapidly reach industrial capacity.

Marshall and Nichols discovered that the electromagnetic isotope separation process would require 5,000 tons of copper, which was in desperately short supply. However, silver could be substituted, in an 11:10 ratio. On 3 August 1942, Nichols met with Under Secretary of the Treasury Daniel W. Bell and asked for the transfer of 6,000 tons of silver bullion from the West Point Depository. "Young man," Bell told him, "you may think of silver in tons but the Treasury will always think of silver in troy ounces!" Eventually, 14,700 tons were used.

The 1,000-troy-ounce (31 kg) silver bars were cast into cylindrical billets and taken to Phelps Dodge in Bayway, New Jersey, where they were extruded into strips 0.625 inches (15.9 mm) thick, 3 inches (76 mm) wide and 40 feet (12 m) long. These were wound onto magnetic coils by Allis Chalmers in Milwaukee, Wisconsin. After the war, all the machinery was dismantled and cleaned and the floorboards beneath the machinery were ripped up and burned to recover minute amounts of silver. In the end, only 1/3,600,000th was lost. The last silver was returned in May 1970.

Responsibility for the design and construction of the electromagnetic separation plant, which came to be called Y-12, was assigned to Stone & Webster by the S-1 Committee in June 1942. The design called for five first stage processing units, known as Alpha racetracks, and two units for final processing, known as Beta racetracks. In September 1943 Groves authorized construction of four more racetracks, known as Alpha II. Construction began in February 1943.

When the plant was started up for testing on schedule in October, the 14-ton vacuum tanks crept out of alignment because of the power of the magnets, and had to be fastened more securely. A more serious problem arose when the magnetic coils started shorting out. In December Groves ordered a magnet to be broken open, and handfuls of rust were found inside. Groves then ordered the racetracks to be torn down and the magnets sent back to the factory to be cleaned. A pickling plant was established on-site to clean the pipes and fittings. The second Alpha I was not operational until the end of January 1944, the first Beta and first and third Alpha I's came online in March, and the fourth Alpha I was operational in April. The four Alpha II racetracks were completed between July and October 1944.

Tennessee Eastman was hired to manage Y-12 on the usual cost plus fixed fee basis, with a fee of $22,500 per month plus $7,500 per racetrack for the first seven racetracks and $4,000 per additional racetrack. The calutrons were initially operated by scientists from Berkeley to remove bugs and achieve a reasonable operating rate. They were then turned over to trained Tennessee Eastman operators who had only a high school education. Nichols compared unit production data, and pointed out to Lawrence that the young "hillbilly" girl operators were outperforming his PhDs. They agreed to a production race and Lawrence lost, a morale boost for the Tennessee Eastman workers and supervisors. The girls were "trained like soldiers not to reason why", while "the scientists could not refrain from time-consuming investigation of the cause of even minor fluctuations of the dials."

Y-12 initially enriched the uranium-235 content to between 13% and 15%, and shipped the first few hundred grams of this to Los Alamos in March 1944. Only 1 part in 5,825 of the uranium feed emerged as final product. Much of the rest was splattered over equipment in the process. Strenuous recovery efforts helped raise production to 10% of the uranium-235 feed by January 1945. In February the Alpha racetracks began receiving slightly enriched (1.4%) feed from the new S-50 thermal diffusion plant. The next month it received enhanced (5%) feed from the K-25 gaseous diffusion plant. By April K-25 was producing uranium sufficiently enriched to feed directly into the Beta tracks.

Read more about this topic:  Manhattan Project, Uranium, Isotope Separation

Other articles related to "electromagnetic separation":

Calutrons and The Manhattan Project - Uranium Isotope Separation
... Most physicists in 1941 doubted that electromagnetic separation would succeed in practice because they expected that the mutual repulsion of the like-charged ions (the space ... (94 cm) cyclotron modified to demonstrate the feasibility of electromagnetic separation of uranium isotopes using the principle of the mass spectrograph ... of isotopes suitable for laboratory research by no means assured that electromagnetic separation could be worked on the industrial scale necessary to make a kilogram of 235U ...

Famous quotes containing the word separation:

    In a separation it is the one who is not really in love who says the more tender things.
    Marcel Proust (1871–1922)