In calculus, **logarithmic differentiation** or **differentiation by taking logarithms** is a method used to differentiate functions by employing the logarithmic derivative of a function *f*,

The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate). It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base *e*) to transform products into sums and divisions into subtractions. The principle can be implemented, at least in part, in the differentiation of almost all differentiable functions, providing that these functions are non-zero.

Read more about Logarithmic Differentiation: Overview, See Also

### Other articles related to "logarithmic differentiation, differentiation":

**Logarithmic Differentiation**- See Also

... Calculus/More

**Differentiation**Rules#

**Logarithmic differentiation**at Wikibooks see for textbook examples of

**logarithmic differentiation**... see for textbook examples of

**logarithmic differentiation**Mathematics portal Darboux derivative, Maurerâ€“Cartan form for generalizations to arbitrary Lie groups ...