Isotopes of Uranium

Isotopes Of Uranium

Uranium (U) is a naturally occurring radioactive element that has no stable isotopes but two primordial isotopes (uranium-238 and uranium-235) that have long half-life and are found in appreciable quantity in the Earth's crust, along with the decay product uranium-234. The average atomic mass of natural uranium is 238.02891(3) u. Other isotopes such as uranium-232 have been produced in breeder reactors.

Naturally occurring uranium is composed of three major isotopes, uranium-238 (99.2739 - 99.2752% natural abundance), uranium-235 (0.7198 - 0.7202%), and uranium-234 (0.0050 - 0.0059%). All three isotopes are radioactive, creating radioisotopes, with the most abundant and stable being uranium-238 with a half-life of 4.4683×109 years (close to the age of the Earth).

Uranium-238 is an α emitter, decaying through the 18-member uranium series into lead-206. The decay series of uranium-235 (historically called actino-uranium) has 15 members that ends in lead-207. The constant rates of decay in these series makes comparison of the ratios of parent to daughter elements useful in radiometric dating. Uranium-233 is made from thorium-232 by neutron bombardment.

The isotope uranium-235 is important for both nuclear reactors and nuclear weapons because it is the only isotope existing in nature to any appreciable extent that is fissile, that is, can be broken apart by thermal neutrons. The isotope uranium-238 is also important because it absorbs neutrons to produce a radioactive isotope that subsequently decays to the isotope plutonium-239, which also is fissile.

Read more about Isotopes Of Uranium:  Uranium-232, Uranium-239, Table

Other articles related to "isotopes of uranium, isotope":

Isotopes Of Uranium - Table
... Z(p) N(n) isotopic mass (u) half-life decay mode(s) daughter isotope(s) nuclear spin representative isotopic composition (mole fraction) range of natural variation (mole fraction ...