**Calculation of The Anomaly**

In vector gauge anomalies (in gauge symmetries whose gauge boson is a vector), the anomaly is a chiral anomaly, and can be calculated exactly at one loop level, via a Feynman diagram with a chiral fermion running in the loop (a polygon) with *n* external gauge bosons attached to the loop where where is the spacetime dimension. Anomalies occur only in even spacetime dimensions. For example, the anomalies in the usual 4 spacetime dimensions arise from triangle Feynman diagrams.

Let us look at the (semi)effective action we get after integrating over the chiral fermions. If there is a gauge anomaly, the resulting action will not be gauge invariant. If we denote by the operator corresponding to an infinitesimal gauge transformation by ε, then the Frobenius consistency condition requires that

for any functional, including the (semi)effective action S where is the Lie bracket. As is linear in ε, we can write

where Ω(4) is d-form as a functional of the nonintegrated fields and is linear in ε. Let us make the further assumption (which turns out to be valid in all the cases of interest) that this functional is local (i.e. Ω(d)(x) only depends upon the values of the fields and their derivatives at x) and that it can be expressed as the exterior product of p-forms. If the spacetime Md is closed (i.e. without boundary) and oriented, then it is the boundary of some d+1 dimensional oriented manifold Md+1. If we then arbitrarily extend the fields (including ε) as defined on Md to Md+1 with the only condition being they match on the boundaries and the expression Ω(d), being the exterior product of p-forms, can be extended and defined in the interior, then

The Frobenius consistency condition now becomes

As the previous equation is valid for *any* arbitrary extension of the fields into the interior,

Because of the Frobenius consistency condition, this means that there exists a d+1-form Ωd+1 (not depending upon ε) defined over Md+1 satisfying

Ωd+1 is often called a Chern-Simons form.

Once again, if we assume Ωd+1 can be expressed as an exterior product and that it can be extended into a d+1 -form in a d+2 dimensional oriented manifold, we can define

in d+2 dimensions. Ωd+2 is gauge invariant:

as d and δ_{ε} commute.

Read more about this topic: Gauge Anomaly

### Famous quotes containing the words calculation of and/or calculation:

““To my thinking” boomed the Professor, begging the question as usual, “the greatest triumph of the human mind was the *calculation of* Neptune from the observed vagaries of the orbit of Uranus.”

“And yours,” said the P.B.”

—Samuel Beckett (1906–1989)

““To my thinking” boomed the Professor, begging the question as usual, “the greatest triumph of the human mind was the *calculation* of Neptune from the observed vagaries of the orbit of Uranus.”

“And yours,” said the P.B.”

—Samuel Beckett (1906–1989)