Characteristics
One often cited description that Mandelbrot published to describe geometric fractals is "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reducedsize copy of the whole"; this is generally helpful but limited. Authorities disagree on the exact definition of fractal, but most usually elaborate on the basic ideas of selfsimilarity and an unusual relationship with the space a fractal is embedded in. One point agreed on is that fractal patterns are characterized by fractal dimensions, but whereas these numbers quantify complexity (i.e., changing detail with changing scale), they neither uniquely describe nor specify details of how to construct particular fractal patterns. In 1975 when Mandelbrot coined the word "fractal", he did so to denote an object whose Hausdorff–Besicovitch dimension is greater than its topological dimension. It has been noted that this dimensional requirement is not met by fractal spacefilling curves such as the Hilbert curve.
According to Falconer, rather than being strictly defined, fractals should, in addition to being differentiable and able to have a fractal dimension, be generally characterized by a gestalt of the following features:

 Selfsimilarity, which may be manifested as:

 Exact selfsimilarity: identical at all scales; e.g. Koch snowflake
 Quasi selfsimilarity: approximates the same pattern at different scales; may contain small copies of the entire fractal in distorted and degenerate forms; e.g., the Mandelbrot set's satellites are approximations of the entire set, but not exact copies, as shown in Figure 1
 Statistical selfsimilarity: repeats a pattern stochastically so numerical or statistical measures are preserved across scales; e.g., randomly generated fractals; the wellknown example of the coastline of Britain, for which one would not expect to find a segment scaled and repeated as neatly as the repeated unit that defines, for example, the Koch snowflake
 Qualitative selfsimilarity: as in a time series
 Multifractal scaling: characterized by more than one fractal dimension or scaling rule

 Fine or detailed structure at arbitrarily small scales. A consequence of this structure is fractals may have emergent properties (related to the next criterion in this list).

 Irregularity locally and globally that is not easily described in traditional Euclidean geometric language. For images of fractal patterns, this has been expressed by phrases such as "smoothly piling up surfaces" and "swirls upon swirls".

 Simple and "perhaps recursive" definitions see Common techniques for generating fractals
As a group, these criteria form guidelines for excluding certain cases, such as those that may be selfsimilar without having other typically fractal features. A straight line, for instance, is selfsimilar but not fractal because it lacks detail, is easily described in Euclidean language, has the same Hausdorff dimension as topological dimension, and is fully defined without a need for recursion.
Read more about this topic: Fractal
Other articles related to "characteristics":
... In 2001, these frictions  combined with the prospect of a devastating defeat in the upcoming election  led to an exodus of conservative and liberal conservative members around Tusk who joined former members of the UW's senior coalition partner, the conservative Solidarity Electoral Action, to form the new party Civic Platform. ...
... Arrow is "the valuation in the market place of personal characteristics of the worker that are unrelated to worker productivity." Personal characteristics can be physical ...
... They frequently took on different characteristics and even names in different areas, but in effect they transcended cultures and time ... of new gods to the collection of existing gods may have been one of the shaping characteristics for the success during the Christianization of Mesoamerica ... with existing ones that seemed to share similar characteristics or responsibilities ...
... There are alternative ways to visualise Orion ... From the Southern Hemisphere, Orion is oriented southupward, and the belt and sword are sometimes called the saucepan or pot in Australia and New Zealand ...