# Fluid Mechanics - Newtonian Versus Non-Newtonian Fluids - Equations For A Newtonian Fluid

Equations For A Newtonian Fluid

The constant of proportionality between the shear stress and the velocity gradient is known as the viscosity. A simple equation to describe Newtonian fluid behaviour is

where

is the shear stress exerted by the fluid ("drag")
is the fluid viscosity – a constant of proportionality
is the velocity gradient perpendicular to the direction of shear.

For a Newtonian fluid, the viscosity, by definition, depends only on temperature and pressure, not on the forces acting upon it. If the fluid is incompressible and viscosity is constant across the fluid, the equation governing the shear stress (in Cartesian coordinates) is

where

is the shear stress on the face of a fluid element in the direction
is the velocity in the direction
is the direction coordinate.

If a fluid does not obey this relation, it is termed a non-Newtonian fluid, of which there are several types.

Among fluids, two rough broad divisions can be made: ideal and non-ideal fluids. An ideal fluid really does not exist, but in some calculations, the assumption is justifiable. An Ideal fluid is non viscous- offers no resistance whatsoever to a shearing force.

One can group real fluids into Newtonian and non-Newtonian. Newtonian fluids agree with Newton's law of viscosity. Non-Newtonian fluids can be either plastic, bingham plastic, pseudoplastic, dilatant, thixotropic, rheopectic, viscoelatic.