**Factor-based Attribution**

A factor-based model of yield curve movements is calculated by deriving the covariance matrix of yield shifts at predefined maturities, and calculating the eigenvectors and eigenvalues of this matrix. Each eigenvector corresponds to a fundamental model of the yield curve, and each eigenvector is orthogonal, so that the curve movement on any given day is a linear combination of the basis eigenvectors. The eigenvalues of this matrix then give the relative weights, or importance, of these curve shifts. .

Factor models use a large sample of historical yield curve data and construct a set of basis functions that can be linearly combined to represent these curve movements in the most economical way. The algorithm always attributes as much of the curve movement to the first basis function, then as much as possible to the second, and so on. Since these functions roughly correspond to our shift and twist motions, this approach attributes almost all of the curve change to these two modes, leaving a very small contribution from higher modes. Typical results attribute 90% of curve movements to shift changes, 8% to twist, and 2% to curvature (or butterfly) movements. However, the issue that these basis functions may be different from those in which the risk decisions were expressed is not widely appreciated.

Since conventional risk analysis for fixed-income instruments usually assumes a parallel yield shift across all maturities, it would be most convenient if a parallel motion mode turned out to dominate the other modes, and in fact this is more or less what occurs.

While a factor-based decomposition of term structure changes is mathematically elegant, it does have some significant drawbacks for attribution purposes:

- Firstly, there is no agreement as to what these fundamental modes actually are, since they depend on the historical dataset used in the calculation (unlike, say, a parallel curve shift – which may be defined in purely mathematical terms). Each market, over each analysis interval, will therefore produce a different set of fundamental modes and hence different attribution decompositions, and so it may be impossible to compare sets of attribution results over longer intervals.
- By deciding to use such an approach, one is implicitly locked into a particular data history and (in practice) data/software vendor.
- The shape of the modes may not match user expectations, and in practice it will be most unlikely that the portfolio will be managed and hedged with reference to these fundamental modes. A manager is more likely to view future curve movements in terms of a simple shift and twist.

The great advantage of a factor-based approach is that it ensures that as much curve movement as possible is attributed to shift movement, and that twist and curvature motion are given as small values as possible. This allows apparently straightforward reporting, because hard-to-understand curve movements are always assigned small weights in an attribution analysis. However, this is at the cost of a distortion of the other results. On the other hand, a naïve interpretation of the terms shift, twist, curvature when applied to yield curve movements may well give rise to higher order movements that are much higher than investors would expect.

There are also problems in the exact definition of the terms shift and twist. Without fixing a twist point at the outset, there is no unique value for these terms in either a Nelson-Siegel or polynomial formulation. However, the location of this twist point may not match user expectations. For a deeper discussion of this point, see Colin (2005).

Read more about this topic: Fixed-income Attribution, Yield Curve Attribution

### Famous quotes containing the word attribution:

“Rationalists are admirable beings, rationalism is a hideous monster when it claims for itself omnipotence. *Attribution* of omnipotence to reason is as bad a piece of idolatry as is worship of stock and stone believing it to be God. I plead not for the suppression of reason, but for a due recognition of that in us which sanctifies reason.”

—Mohandas K. Gandhi (1869–1948)