Cosmic Dust - Dust Grain Formation

Dust Grain Formation

The large grains in interstellar space are probably complex, with refractory cores that condensed within stellar outflows topped by layers acquired subsequently during incursions into cold dense interstellar clouds. That cyclic process of growth and destruction outside of the clouds has been modeled to demonstrate that the cores live much longer than the average lifetime of dust mass. Those cores mostly start with silicate particles condensing in the atmospheres of cool oxygen rich red-giant stars and carbon grains condensing in the atmospheres of cool carbon stars. The red-giant stars have evolved off the main sequence and have entered the giant phase of their evolution and are the major source of refractory dust grain cores in galaxies. Those refractory cores are also called Stardust (section above), which is a scientific term for the small fraction of cosmic dust that condensed thermally within stellar gases as they were ejected from the stars. Several percent of refractory grain cores have condensed within expanding interiors of supernovae, a type of cosmic decompression chamber. And meteoriticists that study this refractory stardust extracted from meteorites often call it presolar grains, although the refractory stardust that they study is actually only a small fraction of all presolar dust. Stardust condenses within the stars via considerably different condensation chemistry than that of the bulk of cosmic dust, which accretes cold onto preexisting dust in dark molecular clouds of the galaxy. Those molecular clouds are very cold, typically less than 50K, so that ices of many kinds may accrete onto grains, perhaps to be destroyed later. Finally, when the solar system formed, interstellar dust grains were further modified by chemical reactions within the planetary accretion disk. So the history of the complex grains in the early solar system is complicated and only partially understood.

Astronomers know that the dust is formed in the envelopes of late-evolved stars from specific observational signatures. In infrared light, emission at 9.7 micrometres is a signature of silicate dust in cool evolved oxygen-rich giant stars. Emission at 11.5 micrometres indicates the presence of silicon carbide dust in cool evolved carbon-rich giant stars. These help provide evidence that the small silicate particles in space came from the ejected outer envelopes of these stars.

Conditions in interstellar space are generally not suitable for the formation of silicate cores. This would take excessive time to accomplish, even if it might be possible. The arguments are that: given an observed typical grain diameter a, the time for a grain to attain a, and given the temperature of interstellar gas, it would take considerably longer than the age of the universe for interstellar grains to form. On the other hand, grains are seen to have recently formed in the vicinity of nearby stars, in nova and supernova ejecta, and in R Coronae Borealis variable stars which seem to eject discrete clouds containing both gas and dust. So mass loss from stars is unquestionably where the refractory cores of grains formed.

Most dust in our solar system is highly processed dust, recycled from the material out of which our solar system formed and subsequently collected in the planetesimals, and leftover solid material such as comets and asteroids, and reformed in each of those bodies' collisional lifetimes. During our solar system's formation history, the most abundant element was (and still is) H2. The metallic elements: magnesium, silicon, and iron, which are the principal ingredients of rocky planets, condensed into solids at the highest temperatures of the planetary disk. Some molecules such as CO, N2, NH3, and free oxygen, existed in a gas phase. Some molecules, for example, graphite (C) and SiC would condense into solid grains in the planetary disk; but carbon and SiC grains found in meteorites are presolar based on their isotopic compositions, rather than from the planetary disk formation. Some molecules also formed complex organic compounds and some molecules formed frozen ice mantles, of which either could coat the "refractory" (Mg, Si, Fe) grain cores. Stardust once more provides an exception to the general trend, as it appears to be totally unprocessed since its thermal condensation within stars as refractory crystalline minerals. The condensation of graphite occurs within supernova interiors as they expand and cool, and do so even in gas containing more oxygen than carbon, a surprising carbon chemistry made possible by the intense radioactive environment of supernovae. This special example of dust formation has merited specific review.

Planetary disk formation of precursor molecules was determined, in large part, by the temperature of the solar nebula. Since the temperature of the solar nebula decreased with heliocentric distance, scientists can infer a dust grain's origin(s) with knowledge of the grain's materials. Some materials could only have been formed at high temperatures, while other grain materials could only have been formed at much lower temperatures. The materials in a single interplanetary dust particle often show that the grain elements formed in different locations and at different times in the solar nebula. Most of the matter present in the original solar nebula has since disappeared; drawn into the Sun, expelled into interstellar space, or reprocessed, for example, as part of the planets, asteroids or comets.

Due to their highly-processed nature, IDPs (interplanetary dust particles) are fine-grained mixtures of thousands to millions of mineral grains and amorphous components. We can picture an IDP as a "matrix" of material with embedded elements which were formed at different times and places in the solar nebula and before our solar nebula's formation. Examples of embedded elements in cosmic dust are GEMS, chondrules, and CAIs.

Read more about this topic:  Cosmic Dust

Famous quotes containing the words formation, dust and/or grain:

    Those who were skillful in Anatomy among the Ancients, concluded from the outward and inward Make of an Human Body, that it was the Work of a Being transcendently Wise and Powerful. As the World grew more enlightened in this Art, their Discoveries gave them fresh Opportunities of admiring the Conduct of Providence in the Formation of an Human Body.
    Joseph Addison (1672–1719)

    Therefore I have uttered what I did not understand, things too wonderful for me, which I did not know. ... I had heard of you by the hearing of the ear, but now my eye sees you; therefore I despise myself, and repent in dust and ashes.”
    Bible: Hebrew, Job 42:3-6.

    Job to God.

    Raise children for your old age as you would store up grain against famine.
    Chinese proverb.