Castigliano's Method

Castigliano's method, named for Carlo Alberto Castigliano, is a method for determining the displacements of a linear-elastic system based on the partial derivatives of the Energy principle structures, he is known for his two theorems. The basic concept may be easy to understand by recalling that a change in energy is equal to the causing force times the resulting displacement. Therefore, the causing force is equal to the change in energy divided by the resulting displacement. Alternatively, the resulting displacement is equal to the change in energy divided by the causing force. Partial derivatives are needed to relate causing forces and resulting displacements to the change in energy.

Castigliano's method for calculating forces is an application of his first theorem, which states:

If the strain energy of an elastic structure can be expressed as a function of generalised displacement qi; then the partial derivative of the strain energy with respect to generalised displacement gives the generalised force Qi.

In equation form,

where U is the strain energy.

  • Castigliano's second theorem – for displacements in a linearly elastic structure.

Castigliano's method for calculating displacements is an application of his second theorem, which states:

If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Qi; then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement qi in the direction of Qi.

As above this can also be expressed as:

Read more about Castigliano's Method:  Examples

Famous quotes containing the word method:

    You that do search for every purling spring
    Which from the ribs of old Parnassus flows,
    And every flower, not sweet perhaps, which grows
    Near thereabouts into your poesy wring;
    You that do dictionary’s method bring
    Into your rhymes, running in rattling rows;
    Sir Philip Sidney (1554–1586)