Cassini–Huygens - Instruments

Instruments

Cassini's instrumentation consists of: a synthetic aperture radar mapper, a charge-coupled device imaging system, a visible/infrared mapping spectrometer, a composite infrared spectrometer, a cosmic dust analyzer, a radio and plasma wave experiment, a plasma spectrometer, an ultraviolet imaging spectrograph, a magnetospheric imaging instrument, a magnetometer and an ion/neutral mass spectrometer. Telemetry from the communications antenna and other special transmitters (an S-band transmitter and a dual-frequency Ka-band system) will also be used to make observations of the atmospheres of Titan and Saturn and to measure the gravity fields of the planet and its satellites.

Cassini Plasma Spectrometer (CAPS)
The CAPS is a direct sensing instrument that measures the energy and electrical charge of particles that the instrument encounters, (the number of electrons and protons in the particle). CAPS will measure the molecules originating from Saturn's ionosphere and also determine the configuration of Saturn's magnetic field. CAPS will also investigate plasma in these areas as well as the solar wind within Saturn's magnetosphere.
Cosmic Dust Analyzer (CDA)
The CDA is a direct sensing instrument that measures the size, speed, and direction of tiny dust grains near Saturn. Some of these particles are orbiting Saturn, while others may come from other star systems. The CDA on the orbiter is designed to learn more about these mysterious particles, the materials in other celestial bodies and potentially about the origins of the universe.
Composite Infrared Spectrometer (CIRS)
The CIRS is a remote sensing instrument that measures the infrared waves coming from objects to learn about their temperatures, thermal properties, and compositions. Throughout the Cassini–Huygens mission, the CIRS will measure infrared emissions from atmospheres, rings and surfaces in the vast Saturn system. It will map the atmosphere of Saturn in three dimensions to determine temperature and pressure profiles with altitude, gas composition, and the distribution of aerosols and clouds. It will also measure thermal characteristics and the composition of satellite surfaces and rings.
Ion and Neutral Mass Spectrometer (INMS)
The INMS is a direct sensing instrument that analyzes charged particles (like protons and heavier ions) and neutral particles (like atoms) near Titan and Saturn to learn more about their atmospheres. INMS is intended also to measure the positive ion and neutral environments of Saturn's icy satellites and rings.
Imaging Science Subsystem (ISS)
The ISS is a remote sensing instrument that captures most images in visible light, and also some infrared images and ultraviolet images. The ISS has taken hundreds of thousands of images of Saturn, its rings, and its moons, for return to the Earth by radio telemetry. The ISS has a wide-angle camera (WAC) that takes pictures of large areas, and a narrow-angle camera (NAC) that takes pictures of small areas in fine detail. Each of these cameras uses a sensitive charge-coupled device (CCD) as its electromagnetic wave detector. Each CCD has a 1,024 square array of pixels, 12 μm on a side. Both cameras allow for many data collection modes, including on-chip data compression. Both cameras are fitted with spectral filters that rotate on a wheel—to view different bands within the electromagnetic spectrum ranging from 0.2 to 1.1 μm.
Dual Technique Magnetometer (MAG)
The MAG is a direct sensing instrument that measures the strength and direction of the magnetic field around Saturn. The magnetic fields are generated partly by the intensely hot molten core at Saturn's center. Measuring the magnetic field is one of the ways to probe the core, even though it is far too hot and deep to visit. MAG aims to develop a three-dimensional model of Saturn's magnetosphere, and determine the magnetic state of Titan and its atmosphere, and the icy satellites and their role in the magnetosphere of Saturn.
Magnetospheric Imaging Instrument (MIMI)
The MIMI is both a direct and remote sensing instrument that produces images and other data about the particles trapped in Saturn's huge magnetic field, or magnetosphere. This information will be used to study the overall configuration and dynamics of the magnetosphere and its interactions with the solar wind, Saturn's atmosphere, Titan, rings, and icy satellites. MIMI includes the Ion and Neutral Camera (INCA), which captures and measures Energetic Neutral Atoms (ENAs).
Radar
The onboard radar is a remote active and remote passive sensing instrument that will produce maps of Titan's surface. It measures the height of surface objects (like mountains and canyons) by sending radio signals that bounce off Titan's surface and timing their return. Radio waves can penetrate the thick veil of haze surrounding Titan. The radar will listen for radio waves that Saturn or its moons may be producing.
Radio and Plasma Wave Science instrument (RPWS)
The RPWS is a direct and remote sensing instrument that receives and measures radio signals coming from Saturn, including the radio waves given off by the interaction of the solar wind with Saturn and Titan. RPWS is to measure the electric and magnetic wave fields in the interplanetary medium and planetary magnetospheres. It will also determine the electron density and temperature near Titan and in some regions of Saturn's magnetosphere. RPWS studies the configuration of Saturn's magnetic field and its relationship to Saturn Kilometric Radiation (SKR), as well as monitoring and mapping Saturn's ionosphere, plasma, and lightning from Saturn's (and possibly Titan's) atmosphere.
Radio Science Subsystem (RSS)
The RSS is a remote sensing instrument that uses radio antennas on Earth to observe the way radio signals from the spacecraft change as they are sent through objects, such as Titan's atmosphere or Saturn's rings, or even behind the Sun. The RSS also studies the compositions, pressures and temperatures of atmospheres and ionospheres, radial structure and particle size distribution within rings, body and system masses and gravitational waves. The instrument uses the spacecraft X-band communication link as well as S-band downlink and Ka-band uplink and downlink.
Ultraviolet Imaging Spectrograph (UVIS)
The UVIS is a remote sensing instrument that captures images of the ultraviolet light reflected off an object, such as the clouds of Saturn and/or its rings, to learn more about their structure and composition. Designed to measure ultraviolet light over wavelengths from 55.8 to 190 nm, this instrument is also a valuable tool to help determine the composition, distribution, aerosol particle content and temperatures of their atmospheres. Unlike other types of spectrometer, this sensitive instrument can take both spectral and spatial readings. It is particularly adept at determining the composition of gases. Spatial observations take a wide-by-narrow view, only one pixel tall and 64 pixels across. The spectral dimension is 1,024 pixels per spatial pixel. Also, it can take many images that create movies of the ways in which this material is moved around by other forces.
Visible and Infrared Mapping Spectrometer (VIMS)
The VIMS is a remote sensing instrument that captures images using visible and infrared light to learn more about the composition of moon surfaces, the rings, and the atmospheres of Saturn and Titan. It is made up of two cameras in one: one used to measure visible light, the other infrared. VIMS measures reflected and emitted radiation from atmospheres, rings and surfaces over wavelengths from 350 to 5100 nm, to help determine their compositions, temperatures and structures. It also observes the sunlight and starlight that passes through the rings to learn more about their structure. Scientists plan to use VIMS for long-term studies of cloud movement and morphology in the Saturn system, to determine Saturn's weather patterns.

Read more about this topic:  Cassini–Huygens

Other articles related to "instruments":

University Of Music And Theatre Leipzig - Departments - Departments
... Faculty I Wind instruments and percussion instruments Conducting and correpetition Singing and musical theatre (e.g ... opera) String instruments and harp Faculty II Early music Piano Musical composition and music texture Musicology, music education and languages School music education Church Music Institute Faculty III ...
Factors of Commercial Revolution - Technological Factors
... Western “galea” (at the end of the 11th century), sophisticated navigational instruments, and detailed charts and maps ... Starting in 1670, the entire world was measured using essentially modern latitude instruments ... By the late 18th century, navigators replaced their prior instruments with octants and sextants ...
Music Of Turkey - Classical Music - Turkish Influence On Western Classical Music
... music, particularly the strong role given to the brass and percussion instruments in Janissary bands ... wrote his Military Symphony to include Turkish instruments, as well as some of his operas ... Turkish instruments were included in Ludwig van Beethoven's Symphony Number 9, and he composed a "Turkish March" for his Incidental Music to The Ruins of Athens, Op ...
Historically Informed Performance - Layout
... sketches and sources are giving information about the layout of singers and instruments ... main layouts are documented Circle (Renaissance) Choir in the front of the instruments (17th–19th century) Singers and instruments next to each other on the choir loft ...

Famous quotes containing the word instruments:

    Whilst Marx turned the Hegelian dialectic outwards, making it an instrument with which he could interpret the facts of history and so arrive at an objective science which insists on the translation of theory into action, Kierkegaard, on the other hand, turned the same instruments inwards, for the examination of his own soul or psychology, arriving at a subjective philosophy which involved him in the deepest pessimism and despair of action.
    Sir Herbert Read (1893–1968)

    We are all instruments endowed with feeling and memory. Our senses are so many strings that are struck by surrounding objects and that also frequently strike themselves.
    Denis Diderot (1713–84)

    The universe appears to me like an immense, inexorable torture-garden.... Passions, greed, hatred, and lies; law, social institutions, justice, love, glory, heroism, and religion: these are its monstrous flowers and its hideous instruments of eternal human suffering.
    Octave Mirbeau (1850–1917)