Boiling Water Reactors - Advantages and Disadvantages - Advantages

Advantages

  • The reactor vessel and associated components operate at a substantially lower pressure (about 75 times atmospheric pressure) compared to a PWR (about 158 times atmospheric pressure).
  • Pressure vessel is subject to significantly less irradiation compared to a PWR, and so does not become as brittle with age.
  • Operates at a lower nuclear fuel temperature.
  • Fewer components due to no steam generators and no pressurizer vessel. (Older BWRs have external recirculation loops, but even this piping is eliminated in modern BWRs, such as the ABWR.)
  • Lower risk (probability) of a rupture causing loss of coolant compared to a PWR, and lower risk of core damage should such a rupture occur. This is due to fewer pipes, fewer large diameter pipes, fewer welds and no steam generator tubes.
  • NRC assessments of limiting fault potentials indicate if such a fault occurred, the average BWR would be less likely to sustain core damage than the average PWR due to the robustness and redundancy of the Emergency Core Cooling System (ECCS).
  • Measuring the water level in the pressure vessel is the same for both normal and emergency operations, which results in easy and intuitive assessment of emergency conditions.
  • Can operate at lower core power density levels using natural circulation without forced flow.
  • A BWR may be designed to operate using only natural circulation so that recirculation pumps are eliminated entirely. (The new ESBWR design uses natural circulation.)
  • BWRs do not use boric acid to control fission burn-up, leading to less possibility of corrosion within the reactor vessel and piping. (Corrosion from boric acid must be carefully monitored in PWRs; it has been demonstrated that reactor vessel head corrosion can occur if the reactor vessel head is not properly maintained. See Davis-Besse. Since BWRs do not utilize boric acid, these contingencies are eliminated.)
  • BWRs generally have N-2 redundancy on their major safety-related systems, which normally consist of four "trains" of components. This generally means that up to two of the four components of a safety system can fail and the system will still perform if called upon.
  • Due to their single major vendor (GE/Hitachi), the current fleet of BWRs have predictable, uniform designs that, while not completely standardized, generally are very similar to one another. The ABWR/ESBWR designs are completely standardized. Lack of standardization remains a problem with PWRs, as, at least in the United States, there are three design families represented among the current PWR fleet (Combustion Engineering, Westinghouse, and Babcock & Wilcox), within these families, there are quite divergent designs.
    • Additional families of PWRs are being introduced. For example, Mitsubishi's APWR, Areva's US-EPR, and Westinghouse's AP1000/AP600 will add diversity and complexity to an already diverse crowd, and possibly cause customers seeking stability and predictability to seek other designs, such as the BWR.
  • BWRs are overrepresented in imports, when the importing nation has neither a nuclear navy (PWRs are favored by nuclear naval states due to their compact, high-power design used on nuclear-powered vessels; since naval reactors are generally not exported, they cause national skill to be developed in PWR design, construction, and operation), nor the desire to develop nuclear weapons (which leads to a marked preference for the CANDU reactor type due to special features of that type). This may be due to the fact that BWRs are ideally suited for peaceful uses like power generation, process/industrial/district heating, and desalinization, due to low cost, simplicity, and safety focus, which come at the expense of larger size and slightly lower thermal efficiency.
    • Sweden is standardized mainly on BWRs.
    • Mexico's only two reactors are BWRs.
    • Japan experimented with both PWRs and BWRs, but most builds as of late have been of BWRs, specifically ABWRs.
    • In the CEGB open competition in the early 1960s for a standard design for UK 2nd-generation power reactors, the PWR didn't even make it to the final round, which was a showdown between the BWR (preferred for its easily understood design as well as for being predictable and "boring") and the AGCR, a uniquely British design; the indigenous design won, possibly on technical merits, possibly due to the proximity of a general election.

Read more about this topic:  Boiling Water Reactors, Advantages and Disadvantages

Other articles related to "advantages":

Factors Affecting Adaptive Reuse - Advantages of Adaptive Reuse
... adaptive reuse as a sustainable avenue in the development of key sites, there are many advantages to using certain sites for redevelopment ... Some of these advantages include the site’s location in many cases, historical sites are often located in the centers of large cities due to the ...
C-4 (explosive) - Characteristics and Uses - Advantages
... A major advantage of C4 is that it can easily be molded into any desired shape ... C4 can be pressed into gaps, cracks, holes and voids in buildings, bridges, equipment or machinery ...
Superheater - Advantages and Disadvantages
... The main advantages of using a superheater are reduced fuel and water consumption but there is a price to pay in increased maintenance costs ... In locomotives used for mineral traffic the advantages seem to have been marginal ...

Famous quotes containing the word advantages:

    No advantages in this world are pure and unmixed.
    David Hume (1711–1776)

    A woman might claim to retain some of the child’s faculties, although very limited and defused, simply because she has not been encouraged to learn methods of thought and develop a disciplined mind. As long as education remains largely induction ignorance will retain these advantages over learning and it is time that women impudently put them to work.
    Germaine Greer (b. 1939)

    The respect for human rights is one of the most significant advantages of a free and democratic nation in the peaceful struggle for influence, and we should use this good weapon as effectively as possible.
    Jimmy Carter (James Earl Carter, Jr.)