Big Bang - Overview - Timeline of The Big Bang

Timeline of The Big Bang

A graphical timeline is available at
Graphical timeline of the Big Bang

Extrapolation of the expansion of the Universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past. This singularity signals the breakdown of general relativity. How closely we can extrapolate towards the singularity is debated—certainly no closer than the end of the Planck epoch. This singularity is sometimes called "the Big Bang", but the term can also refer to the early hot, dense phase itself, which can be considered the "birth" of our Universe. Based on measurements of the expansion using Type Ia supernovae, measurements of temperature fluctuations in the cosmic microwave background, and measurements of the correlation function of galaxies, the Universe has a calculated age of 13.75 ± 0.11 billion years. The agreement of these three independent measurements strongly supports the ΛCDM model that describes in detail the contents of the Universe.

The earliest phases of the Big Bang are subject to much speculation. In the most common models the Universe was filled homogeneously and isotropically with an incredibly high energy density and huge temperatures and pressures and was very rapidly expanding and cooling. Approximately 10−37 seconds into the expansion, a phase transition caused a cosmic inflation, during which the Universe grew exponentially. After inflation stopped, the Universe consisted of a quark–gluon plasma, as well as all other elementary particles. Temperatures were so high that the random motions of particles were at relativistic speeds, and particle–antiparticle pairs of all kinds were being continuously created and destroyed in collisions. At some point an unknown reaction called baryogenesis violated the conservation of baryon number, leading to a very small excess of quarks and leptons over antiquarks and antileptons—of the order of one part in 30 million. This resulted in the predominance of matter over antimatter in the present Universe.

XDF (2012) view - each light speck is a galaxy - some of these are as old as 13.2 billion years - the universe is estimated to contain 200 billion galaxies. XDF image shows fully mature galaxies in the foreground plane - nearly mature galaxies from 5 to 9 billion years ago - protogalaxies, blazing with young stars, beyond 9 billion years.

The Universe continued to grow in size and fall in temperature, hence the typical energy of each particle was decreasing. Symmetry breaking phase transitions put the fundamental forces of physics and the parameters of elementary particles into their present form. After about 10−11 seconds, the picture becomes less speculative, since particle energies drop to values that can be attained in particle physics experiments. At about 10−6 seconds, quarks and gluons combined to form baryons such as protons and neutrons. The small excess of quarks over antiquarks led to a small excess of baryons over antibaryons. The temperature was now no longer high enough to create new proton–antiproton pairs (similarly for neutrons–antineutrons), so a mass annihilation immediately followed, leaving just one in 1010 of the original protons and neutrons, and none of their antiparticles. A similar process happened at about 1 second for electrons and positrons. After these annihilations, the remaining protons, neutrons and electrons were no longer moving relativistically and the energy density of the Universe was dominated by photons (with a minor contribution from neutrinos).

A few minutes into the expansion, when the temperature was about a billion (one thousand million; 109; SI prefix giga-) kelvin and the density was about that of air, neutrons combined with protons to form the Universe's deuterium and helium nuclei in a process called Big Bang nucleosynthesis. Most protons remained uncombined as hydrogen nuclei. As the Universe cooled, the rest mass energy density of matter came to gravitationally dominate that of the photon radiation. After about 379,000 years the electrons and nuclei combined into atoms (mostly hydrogen); hence the radiation decoupled from matter and continued through space largely unimpeded. This relic radiation is known as the cosmic microwave background radiation.

Over a long period of time, the slightly denser regions of the nearly uniformly distributed matter gravitationally attracted nearby matter and thus grew even denser, forming gas clouds, stars, galaxies, and the other astronomical structures observable today. The details of this process depend on the amount and type of matter in the Universe. The four possible types of matter are known as cold dark matter, warm dark matter, hot dark matter, and baryonic matter. The best measurements available (from WMAP) show that the data is well-fit by a Lambda-CDM model in which dark matter is assumed to be cold (warm dark matter is ruled out by early reionization), and is estimated to make up about 23% of the matter/energy of the universe, while baryonic matter makes up about 4.6%. In an "extended model" which includes hot dark matter in the form of neutrinos, then if the "physical baryon density" Ωbh2 is estimated at about 0.023 (this is different from the 'baryon density' Ωb expressed as a fraction of the total matter/energy density, which as noted above is about 0.046), and the corresponding cold dark matter density Ωch2 is about 0.11, the corresponding neutrino density Ωvh2 is estimated to be less than 0.0062.

Independent lines of evidence from Type Ia supernovae and the CMB imply that the Universe today is dominated by a mysterious form of energy known as dark energy, which apparently permeates all of space. The observations suggest 73% of the total energy density of today's Universe is in this form. When the Universe was very young, it was likely infused with dark energy, but with less space and everything closer together, gravity had the upper hand, and it was slowly braking the expansion. But eventually, after numerous billion years of expansion, the growing abundance of dark energy caused the expansion of the Universe to slowly begin to accelerate. Dark energy in its simplest formulation takes the form of the cosmological constant term in Einstein's field equations of general relativity, but its composition and mechanism are unknown and, more generally, the details of its equation of state and relationship with the Standard Model of particle physics continue to be investigated both observationally and theoretically.

All of this cosmic evolution after the inflationary epoch can be rigorously described and modeled by the ΛCDM model of cosmology, which uses the independent frameworks of quantum mechanics and Einstein's General Relativity. As noted above, there is no well-supported model describing the action prior to 10−15 seconds or so. Apparently a new unified theory of quantum gravitation is needed to break this barrier. Understanding this earliest of eras in the history of the Universe is currently one of the greatest unsolved problems in physics.

Read more about this topic:  Big Bang, Overview

Other articles related to "timeline of the big bang, the big bang, timeline of the, timeline, big bang":

Kosmologie - History of The Universe - Timeline of The Big Bang
... of this epoch have been worked out in the Big Bang theory, the details are largely based on educated guesses ...
Timeline Of The Big Bang - See Also
... Graphical timeline of the Stelliferous Era Graphical timeline from Big Bang to Heat Death ...

Famous quotes containing the words bang and/or big:

    This is the way the world ends
    This is the way the world ends
    This is the way the world ends
    Not with a bang but a whimper.
    —T.S. (Thomas Stearns)

    The Methodists love your big sinners, as proper subjects to work upon.
    Horace Walpole (1717–1797)